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The region of the Columbia plot with two light quark flavors is not yet conclusively understood.
Non-perturbative effects, e.g. the magnitude of the anomalous U(1) axial symmetry breaking,
decides on the nature of the phase transition in this region. We report on our study of this region
of the Columbia plot using lattice techniques. We use gauge field ensembles generated within
the Highly Improved Staggered Quark discretization scheme, with the strange quark mass fixed
at its physical value and the light quark mass varied such that ml = ms/27 and ms/40, where
ml = ms/27 corresponds to the physical light quark mass. We study the eigenvalue spectrum of
QCD using the overlap Dirac operator on these gauge field ensembles at finite temperature around
the chiral transition temperature Tc, as the light quark masses approach the chiral limit, and infer
about the fate of the anomalous UA(1) symmetry breaking.
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1. The UA(1) puzzle in QCD

Symmetries determine the order parameters of a phase transition. The anomalous UA(1),
though not an exact symmetry, is believed to affect the nature of the phase transition in two flavor
QCD [1]. If UA(1) is indeed broken then the chiral phase transition for N f = 2 QCD is expected to
be in the O(4) universality class. Whether or not UA(1) is effectively restored at the chiral phase
transition can only be answered non-perturbatively. Lattice studies of N f = 2 QCD have tried to
address this problem. For latest updates see Ref. [2] and the talks in this conference [3, 4].

We follow a different approach. Since the up and down quark masses are light compared to
the intrinsic scale of QCD, the UL(2)×UR(2) symmetry is only mildly broken. Therefore, if we
calculate observables that measure the UA(1) breaking in (2+ 1) flavor QCD with physical u,d
quark masses near the chiral crossover transition and reduce mu,d , we can smoothly reach the chiral
limit. If indeed UA(1) is broken, signatures of the O(4) second order line could be observed by
reducing mu,d . On the other hand if UA(1) is effectively restored we should approach the Z(2)
line or a second order line of UL(2)×UR(2)/UV (2) universality class [5]. In order to verify this we
study in detail the eigenvalue spectrum of (2+1) QCD with physical mu,d and compare the changes
to it as the light quark mass is reduced successively. We then study its effects on UA(1) breaking
observables as a function of light quark mass near the chiral crossover transition.

2. QCD Dirac spectrum and UA(1) breaking

Unlike chiral symmetry, it is not possible to use expectation values of local operators in the
case of UA(1) to investigate its effective breaking or restoration as a function of temperature. In-
stead, it is important to look at the degeneracy of the correlation functions of mesons of appropriate
quantum numbers. From Fig. 1 it is evident that if UA(1) is effectively restored then the meson
correlators along the vertical axes of the box should be degenerate. Accordingly it was suggested

π : q̄γ5
τ

2 q σ : q̄q

δ : q̄ τ

2 q η : q̄γ5q

SUL(2)×SUR(2)

UA(1)

SUL(2)×SUR(2)

UA(1)

Figure 1: Symmetry transformations between scalar and pseudo-scalar mesons.

in Ref. [6] that the difference of the integrated correlators of pions and delta mesons, defined as
χπ − χδ =

∫
d4x [〈iπ+(x)iπ−(0)〉−〈δ+(x)δ−(0)〉], is an observable that will quantify the amount

of UA(1) breaking. This observable contains information about the microscopics of QCD since it
can be written in terms of the eigenvalue density ρ(λ ,ml) with the light quark mass ml = mu = md

of the QCD Dirac operator [7]

χπ −χδ

V→∞−→
∫

∞

0
dλ

4m2
l ρ(λ ,ml)

(λ 2 +m2
l )

2 . (2.1)
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In fact, from the study of up to 2-point correlation functions it has been shown [8, 9] that when
chiral symmetry is restored then the UA(1) can still be broken if the infrared part of eigenvalue
density goes as limλ→0 ρ(λ ,ml) = δ (λ )mα

l with 1 < α < 2. It was further observed [10] that if the
eigenvalue density is an analytic function in m, λ , then using chiral Ward Identities, it is possible
to derive many useful properties of the eigenvalue spectrum of QCD at finite temperature in the
chiral symmetry restored phase. From the study of up to 6-point correlation functions in the scalar
and pseudo-scalar channels, a sufficient condition for the effective restoration of UA(1) in N f = 2
QCD is that the eigenvalue spectrum behaves as ρ(λ ,ml → 0)∼ λ 3.
The properties of the eigenvalue density in QCD in the chiral symmetry restored phase can only
be understood from non-perturbative lattice studies. Specifically, one has to calculate the small
eigenvalues of the QCD Dirac operator on the lattice and verify that they have near-zero peak
as well as parameterize the leading order analytic dependence of the spectrum. The existence
of a small near-zero peak in the eigenvalue spectrum has been observed and were shown to be
strongly sensitive to lattice cut-off effects [11]. Moreover, at high temperatures this near-zero
peak arise due to weakly interacting instanton, anti-instanton pairs [12]. Hence, they are also
sensitive to finite volume effects. However, the leading order analytic dependence of the infrared
spectrum was observed to be quite robust, i.e. insensitive to lattice cut-off effects [13]. In fact, the
leading analytic dependence of the eigenvalue spectrum changes from ρ(λ )∼ λ at chiral crossover
transition temperature Tc to ρ(λ ) ∼ λ 2 at 1.2 Tc [12] for QCD with degenerate u-d quark masses
slightly heavier than physical values. In these proceedings, we study the eigenvalue spectrum for
physical quark masses and its changes as one approaches the chiral limit. We also to check if the
near-zero peak survives in the chiral limit and how the eigenvalue spectrum influences the UA(1).

3. Setup

The gauge field ensembles used in this work were generated within the Highly Improved
Staggered Quark (HISQ) discretization scheme with 2+1 quark flavors. The strange quark mass was
fixed at its physical value and the light quark mass was varied such that ml = ms/27 and ms/40,
where ml = ms/27 corresponds to the physical quark mass. We used gauge field configurations
separated by 100 Monte-Carlo trajectories. The details of the statistics and lattice sizes for the
ensembles used for this study at each value of light quark mass and temperature are listed in table
1.

ms/ml N3
s ×Nτ β T/Tc #conf

27 323×8 6.390 0.97 69
27 323×8 6.445 1.03 81
27 323×8 6.500 1.09 102

40 323×8 6.390 0.99 45
40 323×8 6.423 1.03 50
40 323×8 6.445 1.05 104

Table 1: List of the configurations used in this work.
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Staggered fermions suffer from rooting problem and have no index theorem at finite lattice
spacings. In fact the infrared part of the HISQ eigenvalue spectrum changes quite dramatically
with changes in the lattice spacing, showing the emergence of a small near-zero peak at the finest
lattice spacing [14, 15]. Instead, we use the overlap Dirac operator to measure the low-lying
eigenvalue spectrum for the HISQ ensembles. The overlap operator for one massless quark flavor
is realized as

Dov = M [1+ γ5sgn(γ5DW (−M))] ,

where sgn(...) denotes the matrix sign function and DW is the massless Wilson-Dirac operator
with a domain wall height M ∈ [0,2). Since diagonalizing the overlap operator is computationally
expensive, we first estimate the number and the chirality of the zero modes using the gluonic
definition of the topological charge Q =

∫
d4xq(x), with the topological charge density defined as,

q(x) =
g2

32π2 εµνρσ tr
{

Fµν(x)Fρσ (x)
}
.

The gluonic definition of the topological charge is valid only for sufficiently smooth configurations.
Thus, we have to apply a smoothing technique on the HISQ configurations to remove the ultra-
violet fluctuations of the gauge fields before measuring the topological charge. In this work we use
Wilson flow [16, 17] to measure Q. The flow smoothens the gauge fields over a region of radius
f =
√

8t, t being the flow time. For each temperature we adjusted the flow time of the gauge fields
such that f T < 1 and the small instantons are not smoothened out.

For some configurations, the number and the chirality of zero modes measured using the Wil-
son flow was compared to the number of zero modes of the overlap Dirac operator. We found
agreement in all the cases studied so far ensuring that the index theorem is valid. We used the
information of the chirality of zero modes measured from the gluonic definition to construct a
projected overlap operator DP

ov by projecting into the space of eigenvectors having the opposite
chirality of the zero modes. This ensured that the projected overlap operator had no zero modes
and was much faster to diagonalize on the lattice. The first 100 eigenvalues of DP†

ov DP
ov on the

HISQ ensembles were calculated using the Kalkreuter-Simma (KS) Ritz algorithm [18]. Finally
the eigenvectors of the overlap operator were computed using appropriate projections into the full
vector-space.

Since the overlap operator was used to measure the eigenvalues of configurations generated
with a different fermion discretization (HISQ) we renormalized the eigenvalue spectrum and the
physical observables appropriately to eliminate the effects of this mixed action approach. In order
to do so we calculated the valence (overlap) strange quark mass assuming that the ratio ml/ms is
fixed for both the valence and the sea sectors. We calculated an appropriate renormalized observ-
able, ∆ = ms〈Ψ̄Ψ〉l−ml〈Ψ̄Ψ〉s

T 4 , for the valence sector using the overlap eigenvalues and independently
for the sea quark sector using the traces of derivatives and inverse of the HISQ operator using ran-
dom noise vectors. The valence overlap mass ms was tuned such that these independent estimates
of ∆ are equal to each other.

4. Our Results

As mentioned earlier, we have chosen our configuration at every 100th Monte Carlo step
to ensure that our results do not suffer from strong autocorrelations. To verify this, we plot the
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trajectory of the topological charge as a function of Monte Carlo time for each set of light quark
masses and temperatures. Results are summarized in Fig. 2. From the plots it is evident that we
have good sampling of the topological charge in our chosen set of gauge field ensembles. We

ml = ms/27

−20
−10

0
10
20 Q T = 0.97Tc

−20
−10

0
10
20 Q T = 1.03Tc

2000 2500 3000 3500 4000 4500 5000 5500
−20
−10

0
10
20

Monte-Carlo history

Q T = 1.09Tc

ml = ms/40

−20
−10

0
10
20 Q T = 0.99Tc

−20
−10

0
10
20 Q T = 1.03Tc

2000 2500 3000 3500 4000 4500 5000 5500
−20
−10

0
10
20

Monte-Carlo history

Q T = 1.05Tc

Figure 2: Trajectories of the topological charge of the lattices listed in table 1.

measured the eigenvalue spectrum using the overlap operator and renormalized the eigenvalues
with the tuned valence strange quark mass ms. As discussed earlier this was done such that the
resultant density of the renormalized eigenvalues λ/ms is not sensitive to the mixed action approach
artefacts. Our results for the QCD eigenvalue spectrum for two different values of light quark
masses are summarized in Fig. 3. To understand the general features of the spectrum we fit it to
the ansatz ρ(λ )

T 3 = ρ0A
A2+λ 2 + c |λ |γ , where the terms in the R.H.S model the near-zero peak and the

leading order analytic dependence of the eigenvalue spectra respectively. For the physical quark
masses, the leading order analytic dependence of the eigenvalue density shown in the left panel of
Fig. 3 goes as a power law with the exponent γ ∼ 1 within errors for all the three temperatures
studied. There is a small infrared peak (near-zero peak) whose relative contribution is suppressed
with increasing temperatures. Lowering the sea light quark mass to ms/40, the general features of
the eigenvalue spectrum remain unchanged as evident from the right panel of Fig. 3. The near-zero
peak still survives and a linear analytic dependence on λ is seen as expected from the predictions
of chiral perturbation theory. The ms/40 results are still preliminary and the finite volume effects
are under investigation.
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Figure 3: The eigenvalue density ρ(λ ) normalized to the tuned valence strange quark mass ms.
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In order to study the UA(1) breaking as a function of temperature we calculated the renor-
malized observable m2

s (χπ − χδ )/T 4, in terms of the scaled eigenvalues, which are summarized in
Fig. 4. The red and blue points are for lines of constant physics corresponding to ms/ml = 27 and
ms/ml = 40 respectively. The magnitude of UA(1) breaking at T ∼ Tc reduces with the quark mass,
but it is still non-zero for ml = ms/40, which in MS scale is ∼ 2 MeV. This is in contrast to the
results reported in [3], which observes a sudden fall-off of this observable to zero for ml . mphys

l .
At present we have only two data points for this observable at each temperature, which prevents us
from performing a proper chiral extrapolation.
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T/Tc
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Figure 4: The renormalized UA(1) breaking parameter as a function of quark mass.

5. Conclusions

In this work we have studied the eigenvalue spectrum of the QCD Dirac operator near Tc

with physical value of strange quark mass and the light quark mass changed from its physical
value ms/27 towards the chiral limit with ml = ms/40. We do not find any drastic change in the
features of the eigenvalue spectrum as a function of the light quark mass. The near-zero peak at
the infrared part of the spectrum survives and the leading analytic dependence of the spectrum is
linear in λ . Since we used overlap valence operators to measure the eigenvalue spectrum of the
HISQ sea quarks, we appropriately renormalized the observables to reduce mixed action effects.
We have further observed that the renormalized observable m2

s (χπ − χδ )/T 4 is still non-zero even
for ml = ms/40 at T ∼ 1.1 Tc, which shows UA(1) remains broken. We are currently measuring
the eigenvalue spectrum and the UA(1) breaking at ml = ms/80 which will eventually allow us to
perform a proper chiral extrapolation and understand the UA(1) puzzle in the chiral limit.
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