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1. Introduction

Mapping out QCD phase diagram is one of the most important goals in high energy nuclear
physics. QCD thermodaynamics has several controllable parameters, temperature T , baryon chem-
ical potential and in addition quark masses mud, ms for theoretical studies. Quark mass is a relevant
parameter and it affects the order of QCD phase transition because symmetries of systems are con-
trolled by the mass, which is summarized in the Columbia plot [1, 2]. One can introduce an extra
parameter, e.g. the background magnetic field eB [3], which can be generated in the early stage
of relativistic heavy ion collision experiments. The presence of the magnetic field breaks flavor
symmetry and rotational symmetry, and the magnitude of the magnetic field is expected to reach to
QCD scale so the chiral phase transition would be affected.

From lattice QCD simulations with external magnetic field at the physical pion mass, espe-
cially using stout smeared staggered actions, the inverse magnetic catalysis has been found around
the pseudo critical temperature [4]. Recently, the origin of the inverse magnetic catalysis, in par-
ticular the relation between the decreasing of pseudo critical temperature and the non-monotonic
behavior of chiral condensate around the pseudo critical temperature has been studied in details
in N f =2+1 QCD with a few values of heavy pions using stout staggered fermions [5]. A previous
lattice study with an effective model suggested a new critical end point along with the magnetic
field. They employed stout smeared staggered quarks with physical pion mass for their lattice
calculation and gluonic effective model for predictions [6]. The new critical point is predicted to
appear eB ∼ 10 GeV2 so it is practically difficult to reach such a strong magnetic field using lattice
calculations since the maximum of the magnetic field is bounded by the cutoff a−1. The cutoff
at the critical point is a−1 ∼ 2.4 GeV. However, there is a chance to observe the first oder phase
transition if a system is in proximity to a critical point. This is because, according to our previous
work using the standard staggered fermions, the magnetic field tends to make the phase transition
stronger [7].

In this work, we investigate mass degenerate three flavor QCD, namely, m = mud = ms and
around SU(3) chiral limit. We performed simulations with quark masses corresponding to pion
masses of 320 MeV and 80 MeV in the continuum limit. The results with the heavier quark is used
to check the cutoff effects because that mass corresponds to similar mass regime to the our previous
work with the standard staggered fermion, while those with the lighter quark are used to explore
criticality as it is much closer to the first order regime compared to the physical pion mass regime.

This proceedings is organized as follows. In next section, we introduce our numerical setup,
which includes the implementation of the external field on the lattice with smeared links. In section
3, we review a stochastic estimator to calculate the Dirac spectrum with the external field. In section
4, we show our results. In section 5, we summarize our observations.

2. Setup

2.1 Magnetic field with HISQ Dirac operator

In this section we introduce our setup. We employ Highly Improved Staggered Quarks (HISQ)
to suppress lattice artifacts including the taste violation effect. HISQ is constructed by two of fat-
7 smearing with re-unitarization between them. The smeared links are obtained in the following
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way. Firstly level one smeared links Vµ are constructed by fat-7 from thin SU(3) links Uµ . Next,
re-uniterized links Wµ are constructed by projecting Vµ on U(3). Finally, level two smeared links
Xµ are constructed by fat-7 from thin SU(3) links Wµ with the Lepage term. The HISQ Dirac
operator are built by the Kogut-Suskind term with Xµ and the Naik term with Wµ . Note that unlike
the implementation of imaginary chemical potential, the force term in HMC has to be modified
because it depends on the coordinate.

The magnetic field only couples to quarks thus implementation is done just by replacing Xµ →
uµXµ in the Kogut-Suskind term and Wµ → uµWµ in the Naik term. Here uµ represents U(1) links
with appropriate charge for each quark, which is explained below.

On the lattice, the external U(1) magnetic field is realized as a U(1) link and is constructed in
the following way. Finiteness of lattice size introduces an infrared cutoff to the U(1) field [8]. Let
us denote the lattice size (Nx, Ny, Nz, Nt) and coordinate as nµ = 0, · · · ,Nµ − 1 (µ = x, y, z, t).
The external magnetic field in z direction B⃗ = (0,0,B) is described by the link variable uµ(n) of
the U(1) field and uµ(n) is expressed as follows,

ux(nx,ny,nz,nt) =

{
exp[−iqB̂Nxny] (nx = Nx −1)

1 (otherwise)

uy(nx,ny,nz,nt) = exp[iqB̂nx], (2.1)

uz(nx,ny,nz,nt) = ut(nx,ny,nz,nt) = 1.

Here q is the electric charge of each quark and B̂ ≡ a2B. One-valuedness of the one particle wave
function along with a plaquette requires the Dirac quantization,

qB̂ =
2πNb

NxNy
, (2.2)

where Nb ∈ ZZZ is the number of magnetic flux through unit area for x-y plane. The ultraviolet cutoff a
introduces also a periodicity of the magnetic field along with Nb. Namely, a range 0≤Nb <NxNy/4,
represents an independent magnitude of the magnetic field B.

2.2 Lattice setup

We employ the HISQ action with a tree-level Symanzik gauge action. To generate config-
urations, we use the Rational Hybrid Monte-Carlo algorithm. We perform multi-stream runs to
increase the statistics. The quark masses are degenerate but up type and down(strange) type quarks
are assigned different electromagnetic charges as those in the real world. Our lattice size is 163 ×6
and a−1 ∼ 740 MeV. β ranges are [5.8, 6.2] and [5.7, 6.05] for mπ = 320 MeV and mπ = 80 MeV,
respectively. We take 0 ≤ Nb ≤ 56, which corresponds to 0 ≤

√
eB ≲ 870 MeV in the physical unit.

We measure standard observables, the chiral condensate and its susceptibility and the Binder
cumulant [9] for the chiral condensate. The Binder cumulant is defined as a function of β ,

B4(β ) =
⟨
(δψψ)4

⟩
⟨(δψψ)2⟩2 , (2.3)

where δψψ = ψψ −⟨ψψ⟩. The minimum of Binder cumulant B4 indicates orders of phase tran-
sitions: B4 = 3 corresponds to crossover, B4 ∼ 1.6 for the second order phase transition with the
Ising Z2 universality class, B4 = 1 for the first order phase transition [10].
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In addition, we measure three types of condensates,

⟨ψψ⟩full, f (B) =
∫

DUP[U ;B] Tr
[

1
D f [U ;B]+m

]
, (2.4)

⟨ψψ⟩val, f (B) =
∫

DUP[U ;0] Tr
[

1
D f [U ;B]+m

]
, (2.5)

⟨ψψ⟩sea, f (B) =
∫

DUP[U ;B] Tr
[

1
D f [U ;0]+m

]
, (2.6)

where P[U ;B] = 1
Z(B)e

−Sg[U ]Det [Dup[U ;B] +m]1/4Det [Ddown[U ;B] +m]1/2 and f denotes up and
down quarks. The flavor averaged chiral condensate is defined by

⟨ψψ⟩l (B) =
(
⟨ψψ⟩l,up (B)+ ⟨ψψ⟩l,down (B)

)
/2 (2.7)

for l = full, val, sea. We calculate relative increases of the chiral condensate along with the mag-
netic field [11],

rl(B) =
⟨ψψ⟩l

spec (B)−⟨ψψ⟩l
spec (0)

⟨ψψ⟩l
spec (0)

(2.8)

where ⟨ψψ⟩l
spec (B) is defined using spectral summation with the Dirac spectrum which is explained

below. They are related by rfull(B) = rval(B)+ rsea(B)+O(B4) [11]. This formula is only valid in
eB̂ ≪ 1 because it is based on the Taylor expansion with respect to eB̂. However, it can shed some
light on the origin of the normal/inverse magnetic catalysis.

3. Stochastic spectrum estimator

Here we review the stochastic spectrum estimator [12, 13, 14, 15]. Let us denote n[s, t] as the
number of eigenvalues of a Hermitian operator D̃ = D̃(A) having eigenvalues in [−1,1] in a range
[s, t]. We use a ramp function h[s,t](x) with a support [s, t], i.e.

h[s,t](x) =

{
1 (s < x < t),

0 (otherwise).
(3.1)

By definition, the number is n[s, t] = ∑ j⟨h[s,t](λ
D̃(A)
j )⟩A, where ⟨· · ·⟩A is an ensemble average and

λ D̃(A)
j is j–th eigenvalue of D̃ on a gauge configuration A. Summation over all of eigenvalues can

be represented by trace operation and,

n[s, t] = Tr
[
⟨h[s,t](D̃)⟩A

]
≈ 1

Nr

Nr

∑
k=1

⟨ξ †
k h[s,t](D̃)ξk⟩A ≈

p

∑
n=0

γ(n)[s,t]
1
Nr

Nr

∑
k=1

⟨ξ †
k Tn(D̃)ξk⟩A, (3.2)

where h[s,t](x)≈ ∑p
n γ(n)[s,t]Tn(x) and Tn(x) is the Chebyshev polynomial. ξk is k–th random vector and

Nr is the number of random vectors. During the derivation, we have approximated trace operation as
a Monte-Carlo average of random vectors. In actual calculation we introduce the Jackson dumping
factor to suppress the Gibbs phenomena in the most right hand side in (3.2) as in Ref.[14].
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In order to apply the Chebyshev expansion to calculate the Dirac spectrum, we take

D̃ =
D†D− (λ D†D

max +λ D†D
min )/2

(λ D†D
max −λ D†D

min )/2
, (3.3)

where λ D†D
max and λ D†D

min are the maximum and minimum eigenvalues of a positive Hermitian operator
D†D, respectively. Thus the range of eigenvalue of D̃ is restricted in [−1,1]. By taking the square
root of λ D†D, we reconstruct the Dirac spectrum through the following equation,

ρ(λ )≡ ρ(
√

λ D†D,δ ) =
1

2V
n[s, t]

δ
, (3.4)

where
√

λ D†D =

√
(

λ D†D
max −λ D†D

min
2 )s+ λ D†D

max +λ D†D
min

2 and
√

λ D†D+δ =

√
(

λ D†D
max −λ D†D

min
2 )t + λ D†D

max +λ D†D
min

2 . Here
V is the volume of the system and for the step size δ we have δ = 0.0005. The eigenvalues are
Dψ j = iλ jψ j and

ρ(λ ) =
1
V ∑

j

⟨
δ (λ −λ A

j )
⟩

A
, (3.5)

where ψ j is an eigenvector. Using the Dirac spectrum, one can reconstruct the chiral condensate,

⟨ψψ⟩spec =
∫ ∞

0
dλ

2m
λ 2 +m2 ρ(λ ), (3.6)

except for finite volume corrections. This ⟨ψψ⟩spec is used in the calculation of the relative increase
of chiral condensate r.

4. Results

Here we show our results for mπ = 320 MeV. In general mπ = 80 MeV system shows qual-
itatively similar results with mπ = 320 MeV system except for behavior of the pseudo critical
temperature in external magnetic fields so we just address some results on mπ = 80 MeV system
later.

Our results for the chiral condensate susceptibility (left panel) and corresponding Binder cu-
mulant (right panel) for mπ = 320 MeV are shown in Fig. 1. It can be clearly seen that the peak
location of the chiral susceptibility moves to lower temperature in stronger magnetic field and the
peak heights increases with the magnetic field. The Binder cumulant shows that the system lies in
the crossover regime.

In Fig. 2 we show the Dirac spectra with mπ = 320 MeV at just above the critical temperature.
Dirac spectra with the magnetic field in both sea and dynamical quarks, sea quark only and valence
quark only, obtained using (2.4), (2.5) and (2.6), are shown from left to right panel in Fig. 2. For
Nb > 0, left four panels are consistent with inverse magnetic catalysis while valence ones only show
normal magnetic catalysis behavior.

The relative increase of chiral condensate r with mπ = 320 MeV in two different phases is
shown in Fig. 3. The left panel is for the low temperature phase. All of them monotonically
increases as a function of Nb, namely they show normal magnetic catalysis. Right panel shows the
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r dependence on Nb in the high temperature phase. We can see that contributions from the dynamic
sea quarks show non-montonical behavior. This indicates that the inverse magnetic catalysis seems
to originate from contribution from dynamic sea quarks. This is consistent with the results from
Ref. [4].
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Figure 1: Results for basics observables with mπ = 320 MeV. Left panel shows the chiral susceptibility. For
Nb ̸= 0, we observe small peaks while it does not appear for Nb = 0. Right panel shows the Binder cumulant
for the chiral condensate. There are no signal for chiral phase transition.

Figure 2: Dirac spectrum with mπ = 320 MeV at just above the critical temperature. From left to right, Dirac
spectrum with the magnetic field both in sea and dynamical quarks, sea quark and valence quark (see text),
respectively. From top to bottom, Nb = 0,16,56. Top plots are identical but are shown just for comparison.
For Nb > 0, left four panels are consistent with inverse magnetic catalysis while valence ones only show
normal magnetic catalysis behavior.

We also measure the chiral condensate and its susceptibility for mπ = 80 MeV system. The
susceptibility shows nontrivial dependence of peak location on Nb, namely, first the critical temper-
ature increases and decreases. Except for nontrivial dependence of the susceptibility for the mag-
netic field, results shows qualitatively similar behavior. It might be physical phenomena around
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Figure 3: The relative increase of chiral condensate r with mπ = 320 MeV in two different phases. Left
panel is for low temperature phase. All of them are monotonically increased as a function of Nb, namely
they show normal magnetic catalysis. Right panel shows r dependence on Nb in the high temperature phase.
Except for r which contain magnetic field effect only in the probe, they show inverse magnetic catalysis.

chiral limit but mπL ∼ 1.7 < 4, so it could be finite volume effects and further investigations are
needed. We observe that the Dirac spectrum is qualitatively similar to the heavier case.

5. Summary

We have performed simulations of N f = 3 QCD in external magnetic fields using the HISQ
action on 163 × 6 lattices. Two different values of quark masses are chosen corresponding to
mπ=320 MeV and 80 MeV. We have observed inverse magnetic catalyses in both cases of mπ = 320
MeV and 80 MeV. Except for the dependence of the pseudo critical temperature on the background
magnetic field, two systems show qualitatively similar behavior. On the other hand, mπ = 80 MeV
data shows non monotonic dependence on the external field. However, this result is suspected
coming from finite volume effects and further investigation is needed.
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