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The nature of the QCD thermal transition as a function of quark flavors and masses Francesca Cuteri

(a) First order scenario in the ms−mu,d plane (b) Second order scenario in the ms−mu,d plane.

Figure 1: Two possible scenarios for the order of the QCD thermal phase transition as function of the masses
of quarks. Indicated in Fig. 1(b) are also plausible universality classes for the second order line at mu,d = 0.

1. Introduction

The Columbia plot, of which we show in Figure 1 two possible versions based on current find-
ings, encapsulates our still very limited knowledge about the order of the thermal phase transition
in QCD as function of the two light (assumed degenerate) quark masses mu,d and the strange quark
mass ms. Continuum extrapolated results are so far only available at the physical point. Elsewhere,
using different unimproved [1–6] and improved [7–10] fermion discretizations, seemingly contra-
dicting results have been obtained, in particular in what concerns the case of Nf = 2,3 degenerate
light flavors in the limit of small masses corresponding to the top and bottom left corners in the
Columbia plot, respectively.

This motivated us to push forward with studies aiming at elucidating, in particular, the picture
for Nf = 2 degenerate light flavors, by exploiting the dependence of the chiral transition on the
number of light degenerate flavors Nf as a means to perform controlled chiral extrapolations. To
this end, we treated Nf as a continuous real parameter, of some statistical system behaving, at any
integer Nf value, as QCD at zero density, with Nf mass-degenerate fermion species [11]

ZNf(m) =
∫

DU [detM(U,m)]Nf e−SG . (1.1)

Within this framework, the two considered scenarios for the Columbia plot can be put in one-
to-one correspondence with the two sketches for the order of the thermal phase transition in the
(m,Nf)-plane displayed in Figure 2.

Our original strategy was to find out for which (tricritical) value Ntric
f the phase transition

displayed by this system changes from first-order to second-order, by mapping out the Z2 phase
boundary. The extrapolation to the chiral limit with known tricritical exponents can then decide
between the two scenarios, depending on whether Ntric

f is larger or smaller than 2.
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(a) First order scenario in the m−Nf plane (b) Second order scenario in the m−Nf plane

Figure 2: The two considered possible scenarios for the order of the QCD thermal phase transition as
function of the mass of the quarks and the number of degenerate fermion flavors.

While the tricritical scaling region was found to be very narrow already on coarse lattices,
results at larger m and Nf were found to feature, over a much wider region, a remarkable linear
behavior, which was not expected on universality grounds.

Figure 3: Sketch showing how, via a linear extrapola-
tion to the chiral limit, Nlin

f as an upper bound for Ntric
f

can be extracted, with the first order scenario being
realized for as long as Nlin

f < 2.

What our findings suggest is that, if it
is reasonable to expect both linearity within
some range in Nf and tricritical scaling more
in the chiral limit, then one would be able to
make use of a linear extrapolation to m = 0,
to at least get Nlin

f as an upper bound for Ntric
f ,

out of much more affordable simulations and
possibly without even simulating at noninte-
ger numbers of flavors.

For as long as the upper bound from the
linear extrapolation keeps lying at Nf < 2,
while one simulates at larger and larger Nτ

values towards the continuum limit, one can
infer that the transition in the Nf = 2 chiral
limit is of first order. However, should our
linear extrapolation give Nlin

f & 2, then knowledge of the size of the scaling region is necessary to
draw conclusions.

2. Numerical strategy

We employ unimproved staggered fermions and use the RHMC algorithm [12] to simulate
any number Nf of degenerate flavors, with Nf

4 being the power to which the fermion determinant is
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Figure 4: The chiral condensate distribution according to a model P(x) based on our numerical findings
at various β values and the corresponding moments as function of β . Details on the model are discussed
in [11].

raised in ZNf(m). All numerical simulations are performed using the publicly available OpenCL-
based code CL2QCD [13] of which a version 1.0 has been recently released [14]. We consider
temporal extents Nτ = 4,6 to check for the cutoff dependence of Nlin

f . The ranges in mass m
and gauge coupling constant β of the investigated parameter space are dictated by our purpose of
locating the chiral phase transition for values of the mass m around the critical mZ2 value, with the
temperature related to the coupling according to T = 1/(a(β )Nτ).

To locate and identify the order of the chiral phase transition we rely on a finite size scaling
analysis of the third and fourth standardized moments of the distribution of the (approximate) order
parameter. The nth standardized moment for a generic observable O is expressed as

Bn(β ,m,Nσ ) =
〈(O−〈O〉)n〉〈
(O−〈O〉)2

〉n/2 . (2.1)

Being interested in the order of the thermal phase transition in the chiral limit, we consider the
kurtosis B4(β ,m) [15] of the sampled 〈ψ̄ψ〉 distribution, evaluated at the coupling βc for which
B3(β = βc,m,Nσ ) = 0, i.e. on the phase boundary.

In the thermodynamic limit Nσ→∞, the kurtosis B4(βc,m) takes the values of 1 for a first order
transition and 3 for an analytic crossover, respectively, with a discontinuity when passing from a
first order region to a crossover region via a second order point. For the 3D Ising universality class,
which is the relevant one for our case, the kurtosis takes the value 1.604 [16]. The discontinuous
step function is smeared out to a smooth function as soon as a finite volume is considered. In the
lattice box, the distribution of the approximate order parameter and its higher moments behave,
depending on β , as illustrated in Figure 4. Moreover, in the vicinity of a critical point, the kurtosis
B4(βc,m,Nσ ) can be expanded in powers of the scaling variable x≡ (m−mZ2)N

1/ν

σ , and, for large
enough volumes, the expansion can be truncated after the linear term,

B4(βc,m,Nσ )' B4(βc,mZ2 ,∞)+ c(m−mZ2)N
1/ν

σ . (2.2)
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Figure 5: The Z2 boundary in the m/T −Nf plane for Nτ = 4,6. The dark blue line represents the tricritical
extrapolation to the chiral limit as in [11]. The orange line represents a linear extrapolation based on mZ2 in
the Nf range 2.4-5 using also newly simulated points. The violet line represents a linear extrapolation on the
basis of mZ2 in the Nf range 3.6-4.4. The magenta point at Nτ = 6 and Nf = 3 is borrowed from [3].

As already mentioned, in our case, the critical value for the mass mZ2 is known to correspond to a
second order phase transition in the 3D Ising universality class, so we fix B4(βc,mZ2 ,∞) = 1.604
and ν = 0.6301 to better constrain the fit.

Our simulated values for B4(βc,m,Nσ ) are then fitted to Eq. (2.2) and the fit parameters
c and mZ2 are extracted. The whole study has been repeated for Nf ∈ {3,4,5} at Nτ = 4 and
Nf ∈ {3.6,4.0,4.4} at Nτ = 6.

3. Results and conclusions

Our results are reported in Figure 5. The first important thing to observe is that, while tricritical
extrapolation for Nτ = 4 resulted in Ntric

f < 2, providing a confirmation for the first order scenario
being realized on coarse lattices, a linear extrapolation to the chiral limit using those data which
exhibit linear scaling within the range Nf ∈ [2.4,5.0], results in Nlin

f = 2 within errors. Strictly
speaking, by just considering Nτ = 4 results, one would conclude that the linear extrapolation alone
cannot give conclusive answers on the order of the Nf = 2 transition in the chiral limit. However,
results on finer lattices were produced as well. On Nτ = 6, what we observe is that data within
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the range Nf ∈ [3.6,4.4] certainly do not fall in the tricritical scaling region, but they do exhibit
linear scaling. Moreover, if we consider the result for Nf = 3 for the same discretization from
the literature [3], we can see it is fully consistent with our linear extrapolation. Finally, the most
important aspect of this result is that, linearly extrapolating at Nτ = 6, we get Nlin

f . 3, namely
quite far to the right of Nf = 2.

To conclude, we have proposed and tested an approach, to clarify the order of the thermal
transition in the chiral limit of QCD at zero chemical potential with two dynamical flavors of
quarks. Specifically, a controlled chiral extrapolation in the m−N f plane with N f promoted to a
continuous parameter in the path integral formulation of the theory is possible, given that if the
transition for m→ 0 changes with N f from 1st order (triple) to 2nd by reducing Nf, there has to exist
a tricritical point at some Ntric

f . Moreover, the linearity featured by the Z2 boundary over a wide
Nf region suggests that a linear extrapolation to m = 0 can also provide an upper bound Nlin

f for
Ntric

f , which may become useful to discriminate between first and second order scenario and help
resolving the "Nf = 2 puzzle".

Based on our numerical findings, the shift in the Z2 critical boundary from Nτ = 4 to Nτ = 6
points towards a behavior consistent with that from improved actions on sufficiently fine lattices.
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