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In lattice QCD with Wilson-type quarks, the chiral symmetry is explicitly broken by the Wilson
term on finite lattices. Though the symmetry is guaranteed to recover in the continuum limit,
a series of non-trivial procedures are required to recover the correct renormalized theory in the
continuum limit. Recently, a new use of the gradient flow technique was proposed, in which
correctly renormalized quantities are evaluated in the vanishing flow-time limit. This enables us
to directly study the chiral condensate and its susceptibility with Wilson-type quarks. Extending
our previous study of the chiral condensate and its disconnected susceptibility in (2+1)-flavor
QCD at a heavy u, d quark mass (mπ/mρ ≃ 0.63) and approximately physical s quark mass,
we compute the connected contributions to the chiral susceptibility in the temperature range of
178–348 MeV on a fine lattice with a ≃ 0.07 fm.
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1. Introduction

In the QCD transition/crossover between the low-temperature hadron phase and high-temperature
Quark–Gluon Plasma (QGP) phase, the chiral symmetry plays an essential role. The spontaneously
broken chiral symmetry at low temperatures recovers at this transition. The order parameter, the
chiral condensate

⟨
ψ̄ f ψ f

⟩
for the f ’th flavor, and its susceptibility

χ full
f =

⟨{
1

NΓ
∑
x

ψ̄ f (x)ψ f (x)
}2

⟩
−
⟨

1
NΓ

∑
x

ψ̄ f (x)ψ f (x)
⟩2

, (1.1)

where NΓ = ∑x 1 is the lattice volume and f is not summed over in the RHS, are thus among the
most basic observables to detect the transition/crossover. The chiral susceptibility can be further
decomposed into connected and disconnected parts as χ full

f = χconn
f +χdisc

f , where

χconn
f =

⟨
1

NΓ
∑
x

ψ̄ f (x)ψ f (x)ψ̄ f (0)ψ f (0)
⟩
, (1.2)

χdisc
f =

⟨{
1

NΓ
∑
x

ψ̄ f (x)ψ f (x)
}2

⟩
−
⟨

1
NΓ

∑
x

ψ̄ f (x)ψ f (x)
⟩2

. (1.3)

Because the QCD transition/crossover is a non-perturbative phenomenon, a lattice study is
called for. On the lattice, however, the chiral symmetry is not an easy property to be realized. With
Wilson-type quarks, for example, the chiral symmetry is explicitly broken by the Wilson term to
remove the doublers. Although the chiral symmetry is guaranteed to be recovered in the continuum
limit, non-trivial renormalization procedures including additive renormalization to fermion masses,
chiral condensation etc. are required. With staggered-type quarks, though a subgroup of the chiral
symmetry is kept on the lattice, lattice artifacts due to the taste degrees of freedom thus introduced
should be removed carefully. With lattice chiral quarks such as the domain wall quark and the
overlap quark, a lattice-modified version of the chiral symmetry, the Ginsparg-Wilson symmetry,
can be realized at finite lattice spacings in a limit of additional parameters. In compensation for
this, however, typically hundreds times more computational resources are required.

Recently, a new use of the gradient flow method [1, 2, 3, 4] was proposed to calculate correctly
renormalized observables from lattice simulations [5, 6]: Making use of the finiteness of flowed
operators, non-perturbative estimates of observables are extracted by taking a vanishing flow-time
extrapolation. The new method was first applied to the energy-momentum tensor for which the
explicit violation of the Poincaré invariance on the lattice has been a hard obstacle in obtaining a
non-perturbative estimate [5, 7, 8]. However, because the method is quite general, we can apply it
also to obtain correctly renormalized chiral observables from lattice simulations [6].

In Refs. [8, 9], we have applied the method to study quantities including the chiral condensate,
disconnected chiral susceptibility, and topological susceptibility in (2+1)-flavor full QCD at finite
temperature, adopting improved Wilson quark action and Iwasaki gauge action. The results we
obtained are quite encouraging. We see clear signals of the QCD transition/crossover with the
chiral condensate and the disconnected chiral susceptibility, even with the explicit chiral violation
of Wilson-type quarks [8]. We also find a good consistency between the gluonic and fermionic
definitions for the topological susceptibility [9]. In this paper, we extend the study of Ref. [8] to
compute the connected contribution (1.2) of the chiral susceptibility.
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Table 1: Lattice parameters
Ns Nt T [MeV] T/Tc configuration

28 56 0 0 65
32 16 174 0.92 144
32 14 199 1.05 127
32 12 232 1.22 129
32 10 279 1.47 78
32 8 348 2.44 51

2. Lattice setup

We study (2+1)-flavor QCD adopting a non-perturbatively O(a)-improved Wilson quark ac-
tion and the RG-improved Iwasaki gauge action. We apply the fixed-scale approach, i.e. we vary
the temperature T = 1/aNt by varying the temporal lattice size Nt at a fixed simulation point.
This enables us to use a common set of zero-temperature configurations to carry out the zero-
temperature subtraction of thermal observables and also the fermion wave function renormaliza-
tion (see Sec. 3) at all temperatures, thus reducing the cost of zero-temperature simulations [10].
As the zero-temperature configuration, we have chosen a set of CP-PACS+JLQCD configurations
generated at β = 2.05 corresponding to a ≃ 0.07 fm, degenerate u, d quark mass corresponding to
mπ/mρ ≃ 0.63, and almost physical s quark mass corresponding to mηss/mϕ ≃ 0.74 [11]. The bare
PCAC quark masses are amud = 0.02105(17) and ams = 0.03524(26).

At this simulation point, finite temperature configurations have been generated on lattices with
Nt = 4, 6, · · · 16 corresponding to the tempereture range of 174–697 MeV [12]. In our previous
study applying the gradient flow method to these configurations [8], however, it turned out that
the lattices with Nt <∼ 8 suffer from sizable O

(
(aT )2 = 1/N2

t
)

errors. Therefore, in this paper, we
concentrate on the range Nt ≥ 8 corresponding to T ≃ 178–348 MeV, as listed in Table 1.

3. Gradient flow method

We adopt the simplest gradient flow for the gauge field [2]:

∂tBµ(t,x) = DνGνµ(t,x), Bµ(0,x) = Aµ(x), (3.1)

where the field strength Gνµ and the covariant derivative Dν are defined in terms of the flowed
gauge field Bµ . The flow for quarks are given by [4]

∂t χ f (t,x) = D2χ f (t,x), χ f (0,x) = ψ f (x), (3.2)

∂t χ̄ f (t,x) = χ̄ f (t,x) ⃗D 2, χ̄ f (0,x) = ψ̄ f (x), (3.3)

with Dµ χ f (t,x) =
(
∂µ +Bµ(t,x)

)
χ f and χ̄ f (t,x) ⃗Dµ = χ̄ f (t,x)

(
⃗∂µ −Bµ(t,x)

)
.

In terms of the flowed fields, the correctly normalized chiral condensate in the MS scheme at
µ = 2 GeV is given by [6]⟨

ψ̄(x) f ψ f (x)
⟩
= lim

t→0
cs(t)φ f (t)

⟨
χ̄ f (t,x)χ f (t,x)

⟩
, (3.4)
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where the matting coefficient cs(t) and fermion wave function renormalization factor φ f (t) are

cs(t) =

{
1+

ḡ2(1/
√

8t)
(4π)2

[
4(γ −2ln2)+8+

4
3

ln432
]}

m̄ f (1/
√

8t)
m̄ f (2GeV)

, (3.5)

φ f (t) =
−6

(4π)2t2
⟨

χ̄(t,x)
↔
/Dχ(t,x)

⟩
0

. (3.6)

Here, ḡ(µ) and m̄(µ) are running coupling and running mass in the MS scheme at scale µ , re-
spectively, and ⟨· · ·⟩0 and ⟨· · ·⟩ mean zero- and finite-temperature expectation values. The chiral
susceptibility χ full

f is given similarly by

χ full
f = lim

t→0
[cs(t)φ f (t)]

2

{⟨[
1

NΓ
∑
x

χ̄ f (t,x)χ f (t,x)
]2
⟩
−
⟨

1
NΓ

∑
x

χ̄ f (t,x)χ f (t,x)
⟩2

}
= lim

t→0
χ full

f (t). (3.7)

We evaluate (3.4) and (3.7) non-perturbatively by performing lattice simulations. The proper
way to apply the gradient flow method is to take the continuum limit a → 0 first, then the leading
small-t correction to the flowed chiral susceptibility will be χ full

f (t) = χ full
f + tA+O(t2), where A

is the contamination of dimension eight operators. In our study, however, we have only one lattice
spacing so far and want to take the continuum limit later. To the leading order of O(a2), we will
have additional contaminations like

χ full
f (t,a) = χ full

f (t)+O(a2/t, a2T 2, a2m2, a2Λ2
QCD). (3.8)

Among the O(a2) terms, the term O(a2/t) is singular in the t → 0 extrapolation. In Refs. [8, 9], we
have avoided the difficulty by identifying a range of t,“linear window”, a range of t in which terms
like O(a2/t) and O(t2) are not dominating. Taking a linear t → 0 extrapolation using the data in the
linear window, we may evaluate the RHS’s of (3.4) and (3.7) up to O(a2T 2, a2m2, a2Λ2

QCD) lattice
artifacts. We may check the validity of the linear windows by performing non-linear fits including
O(a2/t) and O(t2) terms. The difference between the linear and non-linear fits gives an estimate of
the systematic error due to the fit ansatz. See Ref. [8] for more details.

4. Numerical results

Extending the study of Ref. [8] in which the chiral condensate
⟨
ψ̄ f ψ f

⟩
and the disconnected

chiral susceptibility (1.3) are evaluated by the gradient flow method, we compute the connected
contribution of the chiral susceptibility, by calculating quark correlation functions at finite flow
time as required in Eq. (1.2).

Previous studies of the connected contribution to the chiral susceptibility adopting the conven-
tional method suggest that the connected susceptibility shows only a mild or no response around the
QCD transition/crossover: With (2+ 1)-flavors of HISQ staggered quarks at mπ ∼ 80–160 MeV,
the connected part varies monotonically around the transition temperature with “no contribution
to the singular behavior” in the full susceptibility [13]. With two flavors of overlap chiral quarks

3
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Figure 1: Full chiral susceptibility χ full
ud (t) as a function of flow time. χ full

ud (t) is fitted by linear and non
linear function. We take t → 0 extrapolation with linear fit and estimate the systematic error by nonlinear fit.
The vertical axes are in lattice unit.

at mπ ∼ 500 MeV, they “do not see a pronounced peak” in the transition region suggested by the
Polyakov loop and the chiral condensate [14]. A study on an anisotropic lattice with (2+1)-flavors
of improved Wilson quarks at mπ = 384(4) MeV also found that the bare connected susceptibility
shows “no singular behavior” around the transition region [15].

With the gradient flow method, we compute correctly renormalized chiral susceptibility (up to
O(a2T 2, a2m2, a2Λ2

QCD) lattice artifacts) including the connected contributions. In Fig. 1, we plot
our full chiral susceptibility χ full

ud (t) for the light u or d quark evaluated at finite flow times. Results
for the s quark are similar. Unlike the case of the energy-momentum tensor [8], we could not see a
clear linear window for the t → 0 extrapolation. In this paper, we thus try both linear and non-linear
fits with varying the fit window. Here, the non-linear fit means χ full

f (t,a) = χ full
f + tA+ t2B+ a2

t C
as adopted in Ref. [8]. In this paper, as a trial with the full susceptibility, we adopt linear windows
in which O(a2/t) and O(t2) contributions are minimized in the sense that the difference in χ full

f is
the smallest between the linear and nonlinear fits for the same range of linear window when taking
the t → 0 limit. The resulting fits with the linear windows are shown in Fig. 1. We adopt the results
of the linear fits as central values and take the difference between the two fits as an estimate of the
systematic error due to the fit ansatz.

The results of the full chiral susceptibility in the t → 0 limit are summarized in Fig. 2 for the
u or d quark (left panel) and for the s quark (right). We see a slight peak at T = 199 MeV, in
accordance with an estimation of Tpc ∼ 190 MeV from other observables [12].

The results for the disconnected and connected chiral susceptibilities adopting the same lin-
ear windows are shown in Figs. 3 and 4, respectively. Note that the vertical scales of the plots
are different between the disconnected and connected chiral susceptibilities. As the amount, the
connected susceptibility gives about ten times larger contributions to the full susceptibility than the
disconnected one.

As noted in Ref. [8], the disconnected chiral susceptibility shows a clear pear at T = 199 MeV.
On the other hand, the connected chiral susceptibility shows at most a slight bump at T = 199

4
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Figure 2: Full chiral susceptibility χ full
f as function of the temperature. The vertical axes are in lattice unit.

Left: light u or d quark susceptibility. Right: s quark susceptibility.
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Figure 3: Disconnected chiral susceptibility χdisc
f as a function of temperature, adopting the same linear

windows as adopted for the full chiral susceptibility. Left: light u or d quark susceptibility. Right: s quark
susceptibility.
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Figure 4: The same as Fig. 3 but for the connected chiral susceptibility χconn
f .

MeV, though the errors are still large to draw a definite conclusion. We note that the temperature
dependence of the connected chiral susceptibility is similar to that observed with overlap chiral
quarks [14].

5. Conclusion

We studied the chiral susceptibility in lattice QCD with (2+ 1)-flavors of dynamical Wilson
quarks. We resolve the issue of explicit chiral violation due to the Wilson term by adopting the
gradient flow method. At a heavy u, d quark mass (mπ/mρ ≃ 0.63) and approximately physical s
quark mass, we calculated both connected and disconnected chiral susceptibilities in the tempera-
ture range of 178–348 MeV on a fine lattice with a ≃ 0.07 fm.
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We found that the full chiral susceptibility shows a slight peak at T = 199 MeV, in accordance
with previous estimation of Tpc ∼ 190 MeV from other observables. The peak structure is clear
with the disconnected chiral condensate, as noted in Ref. [8]. Though the errors are large, our
connected chiral susceptibility also suggests a mild peak. The mild sensitivity of the connected
susceptibility to the QCD transition/crossover is in accordance with previous observations using
conventional methods. However, more statistics and more works on the fits are needed to draw a
definite conclusion. In parallel with this, we are reducing the light quark mass down to the physical
point, where a sharper chiral transition was suggested by the light quark chiral condensate [16].
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JP16H03982, JP15K05041, JP26400251, JP26400244, and JP26287040. This research used com-
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