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that the difference between Wilson and staggered fermions is at least not due to the rooting.
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1. Introduction

Understanding the nature of finite temperature phase transition is an important subject in Quan-
tum chromodynamics (QCD). It is known that the order of the phase transition depends on the quark
mass mq as well as the number of quark flavors N f [1]. Especially in the case of three degenerate
massless flavors, the phase transition is expected to be of first order. It is also expected that for
a certain large mq there is no longer any phase transition but an analytic crossover. Therefore, as
increasing mq from zero, one should find a second order phase transition point or a so-called critical
endpoint which separates regions of the first order phase transition and the crossover.

However, to pin down the critical endpoint of N f = 3 QCD is a longstanding issue in the lattice
QCD community. Previous studies with staggered-type quarks [2, 3, 4, 5, 6] have shown that the
critical pion mass, a pion mass at the critical endpoint, gets smaller as using more improved fermion
actions and smaller lattice spacings, which suggests that the critical pion mass in the continuum
limit is quite small or consistent with zero. A similar tendency has been also reported with Wilson-
type quarks [7, 8, 9] but the critical pion mass is always much larger than that for the staggered
ones at any lattice spacing and even in the continuum limit. Therefore, following two questions
are naturally raised: one is whether the critical pion mass can be really so small as given with the
staggered-type quarks and the other is why the critical pion mass for the two different types of
quarks are so different.

To answer these questions, in this study, we consider N f = 4 QCD as a good analogue of N f = 3
because of following three reasons. First, a first order phase transition is expected in the massless
limit also in N f = 4 [1]. Second, the critical pion mass can be larger in N f = 4 than in N f = 3 based
on a naive counting of the degrees of freedom, which means that one needs less computing cost for
carrying out a proper continuum extrapolation in N f = 4 than in N f = 3. Finally, staggered-type
quarks are naturally defined in N f = 4 in contrast to N f = 3, where the rooted fermion determinant,
which is a non-trivial operation, is needed to represent three degenerate flavors. Therefore, no
concern of the rooting allows better comparison between staggered- and Wilson-type quarks. Since
a study in this context with the naive staggered quarks has already been reported in [10], our aim
is to find a critical endpoint in N f = 4 with Wilson-type quarks and compare our results with those
of [10].

2. Simulation setup

We employ the Iwasaki gauge and the Wilson-Clover fermion actions, where the clover coef-
ficient is non-perturbatively determined in the same way as given in a previous study for N f = 0,
2 and 3 [11]. Our simulations are performed on lattices with three different lattice spacings cor-
responding to temporal extents Nt = 4, 6 and 8 in order to take the continuum limit. We compute
the chiral condensate and its cumulants up to the 4th order, i.e. susceptibility, skewness and kur-
tosis, by using 10 random sources for each configurations. For each Nt we repeat the calculations
at several hopping parameters κ and 2-3 lattice gauge couplings β covering the critical endpoint.
To improve statistics we also adopt the κ-reweighting given in [12]. Then, we determine the criti-
cal endpoint with the kurtosis intersection method [2], where we check the finite-size scaling with
three different spatial volumes N3

s . BQCD code [13] is used for our simulations.
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3. Results
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Figure 1: An example of the susceptibility (left) and the kurtosis (right) of the chiral condensate. Results at
β = 1.68 for Nt = 6 are shown. Difference among colors means different spatial volumes. Data are indicated
with symbols. The reweighting results are indicated using dashed curves with statistical error bands. A
kurtosis value at the second order phase transition point belonging to the Z(2) university class is also shown
with a dotted horizontal line in the right panel.

First, an example of the susceptibility and the kurtosis of the chiral condensate is given in Fig.
1, where results at β = 1.68 for Nt = 6 are shown. It is shown that the reweighting works well and
accordingly, clear extrema of the susceptibility and the kurtosis can be seen.
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Figure 2: Results of the kurtosis intersection method for Nt = 4 (squares), 6 (circles) and 8 (triangles).
Difference among colors means different spatial volumes. Critical endpoints for each Nt are indicated with
black cross symbols. A kurtosis value at the second order phase transition point belonging to the Z(2)
university class is also shown with a dashed horizontal line.

Then, Fig. 2 shows results for the kurtosis intersection method, where kurtosis values at phase
transition/crossover points Kt for each β are fitted to an ansatz

Kt(β ) = KE + cN1/ν
s (β −βE) (3.1)
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with χ2/d.o.f. < 0.42, where βE is a β value at the critical endpoint. One can see that there are well-
defined intersections indicating the critical endpoints for each Nt and kurtosis values at these points
are consistent with one for the Z(2) universality class, -1.396, except for Nt = 4. Note that we do
not assume the Z(2) universality for the fits, i.e. both KE and ν in Eq. (3.1) are free parameters.
The critical exponent ν = 0.7(1) and 0.7(2) for Nt = 4 and 6, respectively, are also close to 0.630 of
the Z(2) universality class while more statistics are needed for Nt = 8.
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Figure 3: β dependence of the critical exponent b defined in Eq (3.2). Difference among colors means
different Nt . Vertical dashed lines with bands indicate β values and their statistical errors at the critical
endpoints for each Nt . b for the Z(2) universality class is also shown with a dashed horizontal line.

To further check the universality we also fit the susceptibility peak χt to an ansatz

χt(Ns) = aNb
s , (3.2)

where we get χ2/d.o.f. < 0.63. Results of the critical exponent b are shown in Fig. 3. It can be seen
that b at the critical endpoint is consistent with one for the Z(2) universality class, 1.964, for Nt =
6 and 8 while the inconsistency with the Z(2) universality class is observed again for Nt = 4. This
might be due to cutoff effects since we check that our largest volume, 163, does not influence the
location of the critical endpoint within statistical uncertainty, which means that there should not be
any visible finite-size effects.

Once βE is given, we determine a κ value at the critical endpoint κE by interpolating κ values
at the transition/crossover points κt for each β using a quadratic function for Nt = 4 and 6 and
a linear function for Nt = 8, where linearly infinite-volume-extrapolated κ values are used. The
critical endpoints in the (β , κt)-plain are shown in Fig. 4, where we find that locations of the
critical endpoints have a non-monotonic behavior as increasing Nt .

Finally, we convert (βE , κE) into physical quantities, i.e. temperature and the pseudo-scalar
meson mass at the critical endpoint, (TE , mPS,E), where the physical scale is determined by the
t0 scale given by the gradient flow method [14] at zero temperature. Fig. 5 summarizes cutoff
dependence of

√
t0TE and

√
t0mPS,E, where N f = 3 results with the Wilson-Clover fremions from
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Figure 4: β dependence of κt . Difference among colors means different Nt . Critical endpoints for each
Nt are indicated by black cross symbols. Critical κ values κc, where the pion mass becomes zero, are also
shown with a solid curve.
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Figure 5: Cutoff dependence of
√

t0TE (left) and
√

t0mPS,E (right). Wilson-Clover results for N f = 4 and
3 [9] are shown with plus and cross symbols, respectively. Continuum extrapolations and their statistical
errors are indicated with bands.

[9] are also shown. We carry out continuum extrapolations by using polynomials of 1/Nt with up
to a cubic term as shown in Fig 5. The left panel shows that the continuum extrapolation of

√
t0TE

is smoothly performed and its value in the continuum limit for N f = 4 is consistent with that for
N f = 3 within the statistical error. On the other hand, it can be found from the right panel that
the continuum extrapolations of

√
t0mPS,E for N f = 4 highly depend on the functional forms used,

which indicates that some of our data, especially for Nt = 4, could be out of the scaling region.
Therefore, simulations on finer lattices are needed for taking the continuum limit more reliably.
However, what can be clearly seen here is that

√
t0mPS,E for N f = 4 is always larger than that for

N f = 3 at any Nt and even in the continuum limit.
In Fig. 6 results of mPS,E/TE for N f = 3 and 4 with Wison-Clover and standard staggered

fermions [4, 10] are compared, where the continuum extrapolated values for Wilson-Clover fermions
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Figure 6: A comparison of mPS,E/TE between Wilson-Clover and standard staggered fermions. Results
for N f = 3 with Wilson-Colver fermions and for N f = 3 and 4 with standard staggered fermions are given
from [9], [4] and [10], respectively, . The continuum extrapolated values for Wilson-Clover fermions are
estimated from a ratio of

√
t0mPS,E to

√
t0TE in the continuum limit (see texts).

are estimated from the ratio of
√

t0mPS,E to
√

t0TE in the continuum limit since the continuum ex-
trapolations cannot be carried out smoothly due to strong cutoff dependence. With this it is found
that the Wilson-Clover results are much larger than the standard staggered ones for both N f = 3
and 4. Furthermore, the N f = 4 result seems to remain non-zero in the continuum limit so far in
contrast to the staggered case, where mPS,E/TE is very close to zero.

4. Conclusions

We studied finite temperature phase transitions of N f = 4 QCD with the non-perturbatively
improved Wilson-Clover fermions. We determined critical endpoints on lattices with Nt = 4, 6
and 8 by applying the kurtosis intersection method for the chiral condensate. The kurtosis value
and a critical exponent for the finite-size scaling of the susceptibility peak at the critical endpoint
suggest that the second order phase transition belongs to the Z(2) universality class. We carried out
continuum extrapolations of temperature and the pseudo-scalar meson mass at the critical endpoint
and found that temperature at the critical endpoint for N f = 3 and 4 are consistent with each other
within statistical uncertainties. Moreover, we showed that the pseudo-scalar meson mass at the
critical endpoint for N f = 4 is larger than that for N f = 3. We also compared results with Wilson-
Clover and standard staggered fermions and found that a ratio of the pseudo-scalar meson mass to
temperature at the critical endpoint for N f = 4 with Wilson-Clover fermions might remain non-zero
even in the continuum limit while that with standard staggered fermions is very close to zero. Since
there is no concern about the rooting for staggered ferminons for N f = 4, the difference between
Wilson and staggered fermions is at least not due to the rooting.

As we still have strong scaling violation of the pseudo-scalar meson mass at the critical end-
point in our continuum extrapolation, taking a more reliable continuum limit is needed to obtain a
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concrete conclusion. Therefore, simulations on finer lattices are our future plan.
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