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1. Introduction

The long and short distance behaviour of QCD-like theories depends significantly on the num-

ber Ny of fermion flavours and on the representation of the gauge group under which the fermions
transform. For sufficiently small N, the B-function is negative and the well-known scenario with
confinement and asymptotic freedom occurs. If Ny exceeds a certain limit N fc the B-function shows
asymptotic freedom near the origin but develops an infrared fixed point, called Banks-Zaks fixed
point [3], at a finite value of the coupling. If one further increases the number of flavours the IR
fixed point moves to weaker coupling. Until, at a certain limit N’; asymptotic freedom is lost, the
B-function is positive and we find an IR fixed point at the origin. The region between N}‘- and N },
where the theory shows a conformal behaviour is called the conformal window. Its upper edge
can be estimated with perturbation theory though the determination of the lower edge is a non-
perturbative problem.
It is the purpose of this article to present results about SU(2) gauge theory with Ny = 3 /2 flavours
of fermions in the adjoint representation of the gauge group, where 3 /2 means 3 flavours of Majo-
rana (or Weyl) fermions. These results have also been presented in [1, 2]. We have investigated the
masses of various particles, including mesons, glueballs and spin 1/2 fermion-glue bound states,
the string tension, and the mass anomalous dimension, as well as the running coupling, in order to
gain insights into the IR behaviour of the theory.

2. Lattice Setup and Simulations

We consider SU(2) gauge theory coupled to fermions transforming under the adjoint represen-
tation of the gauge group. The lattice formulation of the theory that we use employs the tree-level
Symanzik improved gauge action and the Wilson-Dirac operator in the adjoint representation. The
lattice action is

SL=Sc+ Y, Wl (Dw)wyw!, (2.1)
. f

where S¢ is the gauge action and D,, is the Wilson-Dirac operator

(Dw)x,a,a;y,b.ﬁ = 5xy5a,b5a,ﬁ
4
— kY [0 =)o (Vi (0))ap By + (1 4+Na)ap (Vi (= 1)) apOrpry] - (2:2)

p=1

Here the hopping parameter K is related to the bare fermion mass via k = 1/(2mg + 8). The gauge
field variables V), (x) in the adjoint representation are given by [V, (x)]* = 2tr[UJ (X)TUy(x)T?).
For our simulations we use Majorana fermions, satisfying the Majorana condition

v=vy'C, 2.3)

where C is the charge conjugation matrix. Since one usually counts Dirac fermions, our fermions
possess half the number of degrees of freedom as Dirac fermions and are counted as Ny = 1/2.
Consequently Ny = 3/2 is to be interpreted as 3 species of Majorana fermions. In order to reduce
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Figure 1: Particle masses and 1/ as a function of ampcac for B = 1.5 (left) and § = 1.7 (right).

lattice artifacts we use 3 levels of stout smearing [4] for the link fields in the Wilson-Dirac operator,
with smearing parameter p = 0.12. For Majorana fermions the fermion integration

/ [dy] e 2PV = P(CD,,) = ++/detD,, (2.4)

yields the Pfaffian of the Wilson-Dirac matrix. With 3 Majorana fermion fields the functional
integrals contain a factor (detDW)3/ 2, which can be treated with the PHMC algorithm. The possible
sign of Pf(CD,,) has to be taken into account in the observables by reweighting. In simulations not
too close to the critical hopping parameter K., negative signs are very rare and it was not necessary
to consider them in the parameter regions of our simulations for the determination of the masses.
For generating field configurations on the lattice we have used the two-step polynomial hybrid
Monte Carlo (PHMC) algorithm [5].

We have generated ensembles at two different values of the lattice coupling f = 1.5 and f = 1.7
and many different fermion masses. For a complete list of all used ensembles see [1].

3. Particle Spectrum and Scaling

One way to determine if a theory is conformal is the dependence of the particle spectrum on
the renormalized fermion mass m,. In a theory outside the conformal window, with confinement
and chiral symmetry breaking, the mass of the pseudo-Goldstone boson vanishes when the fermion
mass m, goes to zero, whereas the other particle masses approach a finite value. In the IR confor-
mal scenario all particle masses and the string tension would asymptotically scale to zero in the
conformal limit according to

M o mt/ 7). 3.1)

where y* is the value of the mass anomalous dimension at the fixed point [6, 7]. In this scenario
the ratios of masses are approximately constant for small m,. These ratios represent universal
features of (near) IR conformal theories [8]. In practice, however, the limit of vanishing fermion
mass m, cannot be reached in numerical simulations. In a near conformal theory severe finite size
effects would occur for small m,, and have a substantial influence on the mass spectrum. The
part of the spectrum we investigated consists of scalar, pseudo-scalar, vector and pseudo-vector
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Figure 2: Particle masses and /0 in units of the pseudoscalar mass as a function of ampcac for § = 1.5 and
B=1.7.

mesons, as well as the scalar glueball. In addition, we also find a spin 1/2 fermion-glue bound
state, represented by oyytr(F*Yy) possible due to the adjoint fermions. Apart from the particle
masses we have also calculated the string tension ¢ from the static quark-antiquark potential, where
“quark” means a particle in the fundamental representation of the colour gauge group. The square-
root of ¢ has dimensions of a mass and scales as a mass.

Fig. 1 shows the particle masses as a function of the fermion mass. All masses appear to scale
downwards towards the limit mpcoc = 0. The lightest particle, being well separated from the rest,
is the scalar glueball. The overall behaviour indicates a scenario different from the QCD-like one,
where the pseudo-scalar pseudo-Goldstone boson is lightest particle. As expected for a theory in
the conformal window, all masses scale approximately in the same way and their ratios are constant
as shown in Fig. 2. The estimate of the mass anomalous dimension can be obtained by a fit to the
data. This gives y* ~ 0.5, for f = 1.5, and y* = 0.33(13), for B = 1.7.

4. Mode number

An alternative method for the determination of the mass anomalous dimension is based on the
spectral density of the Dirac operator [9, 10, 11, 12, 13]. The mode number v(€) is defined to
be the number of eigenvalues of the hermitian operator D D,, below some limit Q2. The mode
number obeys a scaling law [10]

V(Q) = vo+a; (Q%—a3)¥H7) 4.1)

for sufficiently small values of Q2 — a%, where a; is proportional to mpcsc. Therefore, a fit of v(Q)
to this function in a suitable range [Qumin, Qmax] allows to estimate the mass anomalous dimension
7*. The choice of the fit range [Qmin, 2max] is a sensitive issue. For a small fit range near a scale Q,
the resulting value for the mass anomalous dimension can be considered as an effective anomalous
dimension y(Q2), which approximates the corresponding renormalisation group function [11]. For
large Q it is expected that y(Q) decreases and approaches its value zero at the asymptotically
free UV fixed point. On the other hand, for small Q finite volume effects and effects of the non-
vanishing fermion mass mpcyc Will disturb the scaling behaviour. Therefore the fit range should
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Figure 3: Fitted value of the mass anomalous dimension for the ensemble at § = 1.5, k¥ = 0.1351 , and
Kk = 0.1359. Qui, denotes the lower end of the fitting interval, while the upper end is fixed to Qp;, +0.07.
In the shaded region we obtain the best fits for both ensembles (left). Fitted value of the mass anomalous
dimension for the ensemble at § = 1.7, ¥ = 0.1322, ¥ = 0.1320, and k = 0.1340 (right).

be located in an intermediate regime, where the effects of the finite volume and non-zero fermion
mass can be neglected [10, 13]. For an infrared conformal theory the coupling runs very slowly
for a wide range of scales at low u, and there the anomalous dimension y varies slowly, too,
approximatively developing a plateau at the value y*. At f = 1.5 we obtain reasonable fits with an
acceptable p-value and a correlated y? per degree of freedom in a certain region of Q values for
the ensembles with the smallest fermion masses. However, there is no pronounced plateau for the
obtained values in this range. The best fits are obtained at rather large values of Q. Further in the
infrared, the correlated y? of the fit drastically increases, which is an indication of fermion mass
effects. We take the final value from the middle of the range where the correlated x2 per degree of
freedom is below 2.5 for ensemble H, and the width of this range as an estimate for the error. This
provides a rough estimate of y* ~ 0.5+ 0.05.
In contrast to the case of B = 1.5, a considerable plateau of the fitted values is obtained at B = 1.7
in the infrared region. We obtain a value of y* ~ 0.377(3). Taking also the uncertainties in the
determination of the fitting interval into account, the estimate is y* ~ 0.38(2).

We made a crosscheck of the obtained values of y* with the hyperscaling of the mass spectrum.
As shown in Fig. 4, the agreement with the expected functional behaviour is reasonable. We can
also vary the exponents close to the measured values in order to minimise the sum of the x? from
the linear fits. In this way we obtain a minimum around y* ~ 0.46(2) for B = 1.5 and y* ~ 0.37(2)
for B = 1.7. This shows that the values for the mass anomalous dimension obtained from the mode
number are consistent with the hyperscaling of the mass spectrum.

5. Running Coupling

We can also try to look directly at the running coupling of the theory, to see whether the
coupling runs, walks or does not change at all in some momentum range. For this, we choose to fix
our gauge to Landau gauge. As the running coupling in Landau gauge is

a(p®) = a(u)Z(p*)J*(p?), (5.1)
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Figure 4: A cross check of the scaling exponents obtained from the mode number with the scaling of the
particle masses. These figures show a fit to the hyperscaling hypothesis of the masses including volume
scaling. The points with the smallest values on the x-axis correspond to the ensembles B (f = 1.5) and K
(B = 1.7). The lines correspond to a linear fit, in case of § = 1.7 without the data of ensemble K.

where Z(p) and J(p) are the renormalized gluon and ghost dressing functions and u is the renor-
malization scale. We can simplify this even further by using the MiniMOM scheme [14], defined
by Z(u) =1,J(u) = 1. Then eq. (5.1) simplifies to

a(p?) = %Zo<p2>J§(p2), (5.2)

The running scale is defined by the lattice momentum and the renormalization scale is set at the
inverse lattice spacing. Zo(p?) and Jy(p?) are the bare gluon and ghost dressing functions, that
can be determined rather easily by measuring gluon and ghost propagators on O(20) gauge-fixed
lattice configurations, well separated by more than fifty molecular dynamics units. Fig. 5 shows the
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Figure 5: Running of the coupling for § = 1.7 and several fermion masses (left). Fit of o/(it) to perturbation
theory for B = 1.7 at the largest x (right).

running coupling for B = 1.7 and three different values of k. For all three values of x the running
coupling shows a peak and significant running in the infrared at this given lattice coupling. We can
also clearly see a dependence of the running coupling on the fermion mass. This is expected as the
fermion mass is a relevant parameter of the theory that actually pushes the theory away from the
conformal fixed point. Also in agreement with this fact, the running of the coupling decreases with
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the fermion mass and at higher momentum where the effects of the non-vanishing fermion mass
can be neglected. Even though the running of the coupling is slow in the large momentum region
it is still incompatible with zero. The running of the coupling can also be fitted to perturbation
theory [2, 15] to check a possible relation to the continuum theory. Doing this we can extract the
A-parameter of the theory. We find

aAMiMOM (B — 1.5) = 0.0051(8) ,
aAMPMOM (B — 1.7) = 0.0054(5) .

All quoted errors are purely systematic corresponding to variations coming from different choices
of the fitting intervals. The value of A in lattice units is significantly smaller than the masses of
hadrons in lattice units at the same parameters, for instance the glueball 07 mass amg++ ~ 0.25(3).
The contrast to the well-known confining gauge theories is quite significant, in QCD the value of
the intrinsic ultraviolet scale A is comparable to the hadron scales in the various MOM schemes. It
is, furthermore, remarkable how weak the dependence of aA on the bare lattice coupling is. Even
though these observations are not enough to provide a strong evidence for a conformal behavior,
they are clearly much different from QCD-like theories.
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