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1. Introduction

The standard lattice gauge theory as formulated by Wilson on a finite 4 dimensional hypercubic
Euclidean lattice is well defined without gauge-fixing. The theory is quantised through a functional
integral with a gauge-invariant measure, and gauge invariance is manifest at all stages of a non-
perturbative calculation. This formalism works very well for a vector-like theory like Quantum
Chromodynamics, however, meets with severe problems for manifestly local formulations of chiral
gauge theories on lattice.

Lattice actions such as chiral gauge theories as mentioned above have terms that explicitly
break gauge invariance. Since the functional integration integrates also along the gauge orbit, the
longitudinal gauge degrees of freedom (lgdof ) effectively couple with physical degrees of freedom,
i.e., fermions and transverse gauge fields, in the terms that explicitly break gauge invariance. The
lgdof are elements of the gauge group and are radially frozen scalar fields. In the absence of a
kinetic term for the lgdof, these are random fields and the resulting strong couplings led to the
failure of several proposals for lattice chiral gauge theories in the past. An obvious recipe to try out
is gauge-fixing. However, non-perturbatively (i.e., with compact lattice gauge fields) it was shown
that for a BRST-invariant theory the unnormalised expectation value of a gauge-invariant operator
as well as the partition function is strictly zero [1]. In fact the BRST invariance makes sure that
the positive and the negative sectors which arise out of multiple solutions (Gribov copies) of the
gauge-fixing condition exactly cancel. If the gauge-fixing avenue is to be pursued, it is clear that
something needs to be done to go around this impasse.

Our work [2, 3, 4] focusses on two non-perturbative gauge-fixing proposals, one for U(1)
theory and the other for SU(N) gauge theories, and numerically investigate them.

2. Compact U(1) lattice gauge theory with higher derivative gauge-fixing

2.1 Introduction

The proposal [5] for the U(1) theory breaks BRST symmetry explicitly through a specially
engineered higher derivative (HD) gauge-fixing term (on the lattice) that has a unique absolute
minimum of the action and has the desired continuum limit, i.e., a covariant gauge-fixing term.
By controlling the coefficient of the HD gauge-fixing term and appropriate counter-terms, it is
possible to recover the BRST symmetry (and gauge symmetry in the physical sector) so that the
lgdof decouple from the theory dynamically.

The U(1) proposal was investigated earlier, at weak gauge couplings, both in perturbation
theory and also using numerical simulation and a novel phase transition was found between a
regular ordered phase (FM) and a spatially modulated ordered phase (FMD) that broke Euclidean
invariance. When this phase transition was approached from FM, the lgdof were found to decouple
from the theory with only free massless photons appearing in the spectrum.

In fact, U(1) chiral gauge theories were investigated with this gauge-fixing method within
the Smit-Swift model using Wilson fermions and a so-called waveguide model using domain-wall
fermions. Both proposals famously failed previously without gauge-fixing. However, with the HD
gauge-fixing, in the reduced model limit (i.e., for zero gauge coupling), these theories were able to
produce chiral fermions with the scalars (lgdof ) decoupled [6, 7].
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It may be noted that the standard compact U(1) lattice gauge theory has been known to have
phase transition at gauge coupling g∼ 1. The weak coupling phase, known as the Coulomb phase,
is the usual phase with free massless photons appearing in the spectrum. The strong coupling phase
is confining, giving rise to non-perturbative properties like formation of gauge-balls etc. However,
there exists no quantum continuum limit as the phase transition is found to be weakly first order.

Apart from the interests for a non-perturbative definition of a U(1) chiral gauge theory, and
also a possible alternative formulation of the standard lattice theory, the investigations at strong
gauge coupling is thus also an interesting probe for any non-trivial properties of U(1) gauge theory
at short distances. Recently, we have investigated the HD gauge-fixing proposal at strong gauge
couplings [2, 3].

At strong gauge couplings in the U(1) case, we encountered problems with local algorithms
like the Multihit Metropolis (MM) used entirely for the numerical investigations at weak gauge
couplings. There were problems at larger values of the coefficient of the HD gauge-fixing term
even at weak gauge couplings. We found that a Hybrid Monte Carlo (HMC), a global algorithm,
performed more reliably with the HD action at stronger gauge couplings and larger coefficient of
the HD term. Accurate quantitative analysis was only possible after we switched to the HMC
algorithm.

2.2 The HD gauge-fixing action and results at weak gauge coupling

The Euclidean action, containing only physical fields, on a 4-dimensional hypercubic lattice
is given by:

S = SW +SGS +Sct. (2.1)

The first term in (2.1), SW, is the gauge-invariant standard Wilson term containing a summation
over all gauge plaquettes Pxµν ,

SW =
1
g2 ∑

x, µ<ν

(
1−RePxµν

)
, (2.2)

the plaquette being the smallest Wilson loop around an elementary square at a lattice point x on the
(µ,ν) plane.

The second term in (2.1), SGS, is the Golterman-Shamir HD gauge-fixing term [5] and is given
by

SGS = κ̃

(
∑
xyz

�xy(U)�yz(U)−∑
x

B2
x

)
, (2.3)

where the gauge-covariant Laplacian �xy(U) is given by,

�xy(U) = ∑
µ

(δy,x+µUxµ +δy,x−µU†
x−µ,µ −2δxy), (2.4)

and,

Bx = ∑
µ

(Ax−µ,µ +Axµ)
2/4, with Axµ = ImUxµ . (2.5)
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The action (2.1) with the HD gauge-fixing term has a unique absolute minimum at Uxµ = 1 [5] . In
the naive continuum limit, the HD gauge-fixing term gives the usual covariant gauge fixing term

κ̃g2
∫

d4x(∂µAµ)
2 = (1/2ξ )

∫
d4x(∂µAµ)

2, (2.6)

where ξ is defined as

ξ = 1/(2κ̃g2). (2.7)

As a result, a weak coupling perturbation theory (WCPT) of the gauge fixed theory with ξ ∼ 1 is
defined around g = 0 and large κ̃ → ∞.

The action explicitly breaks BRST symmetry (no ghost fields present, and the HD gauge-
fixing term is not an exact square of the gauge-fixing function) and thus the theory evades the no-
go theorem. Obviously for physical fields, gauge symmetry is broken. To recover the symmetry,
remembering that HD gauge-fixing is expected to lead to a renormalisable gauge, counter-terms
can be constructed using power counting. We have considered only a dimension-2 gauge mass
counter-term

Sct =−κ ∑
x µ

(
Uxµ +U†

x µ

)
. (2.8)

There are five other marginal counter-terms possible. However, they all can be treated perturba-
tively [8].

Under a gauge transformation Uxµ → gxUxµg
†
x+µ , the gauge non-invariant terms, collectively

called SNI[Uxµ ] (= Sct[Uxµ ]+ SGS[Uxµ ]), pick up the lgdof and the theory becomes a scalar-gauge
system. The action obtained after the gauge transformation (the so-called Higgs picture) now
includes SNI[φ

†
x Uxµφx+µ ] with the lgdof φx = g†

x radially frozen scalar fields.
The mass counter-term (2.8) takes the following form in the Higgs picture:

Sφ

ct =−κ ∑
x µ

(
φ

†
x Uxµφx+µ +φ

†
x+µU†

x µφx

)
∼−κ ∑φ

†�(U)φ , (2.9)

which is the usual kinetic term for the scalar field.
Similarly, the HD gauge-fixing term (2.3) becomes, in the Higgs picture,

Sφ

GS = κ̃
(
∑φ

†�2(U)φ −∑B2) , (2.10)

where,

Bx = ∑
µ

( ¯Ax−µ,µ + ¯Axµ)
2/4, with ¯Axµ = Im

(
φ

†
x Uxµφx+µ

)
. (2.11)

The total action, in the Higgs picture, thus assumes the form:

Sφ = SW +Sφ

GS +Sφ

ct (2.12)

where the standard Wilson term SW is gauge invariant and hence does not pick up the lgdof when
the functional integral integrates along the gauge orbit.
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The gauge invariance as found in the standard Wilson term SW alone is the target symmetry
under the gauge transformations:

Uxµ → gxUxµg
†
x+µ , gx ∈U(1) (2.13)

However, the total action (2.12) in the Higgs picture has an enlarged (unphysical) symmetry
under the transformations

Uxµ → hxUxµh
†
x+µ , φx→ hxφx, hx ∈U(1). (2.14)

We would call the local symmetries given by (2.13) and (2.14) respectively as the g-symmetry
(target physical symmetry) and the h-symmetry.

Putting φx = 1 in the expression for the action Sφ in the Higgs picture (2.12) recovers the action
(2.1), called the action in the vector picture. Given the Haar measure of the functional integrals,
theories given by the two actions (2.1) and (2.12) are completely equivalent.

With vanishing κ̃ , the theory approaches an Abelian gauge-Higgs system.
With zero gauge coupling g = 0, we have Uxµ = 1 for all the links of the lattice. This is known

as the reduced limit. The action of the reduced model is given by,

S[φ ] =−κ ∑
x

φ
†
x (�φ)x + κ̃ ∑

x

{
φ

†
x
(
�2

φ
)

x−b2
x
}
, (2.15)

where bx is the appropriate modification of Bx of Eq. (2.11) with Uxµ = 1.
The reduced model action is invariant under the global transformations

φx→ hφx, (2.16)

where h ∈U(1)global is independent of the lattice site.
Following [5], we can gain useful insight into the phase diagram in the region of small g and

large κ̃ by doing a simple-minded calculation. We start from the action (2.1) in the so-called vector
picture, and use the property that the action has an absolute minimum at Uxµ = exp(iagAµ(x)) = 1.
Near this point, the action can be expanded in powers g in the constant field approximation, i.e.,
by neglecting derivatives of the gauge field. This leads to an expression for a classical potential
density in powers of the gauge coupling g:

Vcl(Aµ) = κ

(
g2

∑
µ

A2
µ + ...

)
+

g6

2
κ̃

{(
∑
µ

A2
µ

)(
∑
µ

A4
µ

)
+ ...

}
, (2.17)

where terms with higher powers of g2 are indicated by the ellipses. The classical potential density
is expected to be a reasonable approximation at small g. However, as it turns out from numerical
simulations, the classical potential density (2.17) produces a good qualitative picture of the new
universality class in regions of the parameter space where the gauge coupling g is not very small
and κ̃ is only sufficiently large, depending on the value of g.

Inspection of the expression for Vcl (2.17) immediately leads to a critical surface defined by

κ ≡ κFM−FMD(g, κ̃) = 0, (2.18)
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where the gauge boson (photon) is rendered massless.
Minimization of Vcl (2.17) with respect to gAµ shows that the classical potential density

has two different minima at gAµ = 0 for κ ≥ κFM−FMD, and at gAµ = ±
(
|κ−κFM−FMD|

6κ̃

)1/4
for

κ < κFM−FMD. Hence, in the quantum theory at small g and large κ̃ , it is expected that tuning κ to
κFM−FMD(g, κ̃) signals a new continuous phase transition, within the broken phase, with a vector
condensate 〈gAµ〉 as an order parameter. The phase with the vector condensate is the novel phase
and is called Ferromagnetic Directional (FMD) phase across all versions of the theory, including
the theory in the reduced limit. Obviously the FMD phase breaks the rotational symmetry, and
no Lorentz covariant continuum limit is obtainable from within the FMD phase. Hence, contin-
uum limit is to be taken by approaching the continuous FM-FMD transition from the so-called
Ferromagnetic (FM) phase.

Earlier investigations done in [5, 9] at weak gauge couplings are consistent with the above
picture.

For weak couplings, these studies confirmed a phase diagram with generic features as given in
the left panel of Fig. 1 at gauge coupling g = 1, approximately the largest gauge coupling exhibit-
ing all the features of the phase diagram at weak gauge couplings (g < 1). The nomenclature of
the phases in this theory has been taken as per the phases in the so-called reduced model [9]. The
regular broken phase, FM (with ferromagnetic order) is characterized by a massive photon and a
massive scalar, the PM (for paramagnetic) phase is the disordered (symmetric) phase having mass-
less photons, and finally the new FMD (ferromagnetic-directional) phase is the spatially modulated
ordered phase that breaks Euclidean rotational symmetry (there is also an anti-ferromagnetic or
AM phase with staggered order, not to be discussed further in this study). Photon and scalar
masses scale by approaching the continuous FM-PM transition from the FM phase, leading to a
continuum gauge-Higgs theory. A sufficiently large κ̃ (and small g) ensures a satisfactory contin-
uum limit with only the photon mass scaling (thereby recovering gauge symmetry and decoupling
the scalars) at the FM-FMD phase transition by tuning a single parameter κ from the FM side.
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Figure 1: Phase diagram in the (κ̃,κ) plane at gauge coupling g = 1.0 on the left and at g = 1.3 on the right,
on 164 lattice

2.3 Results at strong gauge coupling

Vacuum expectation values of quantities that were measured on equilibrated gauge field con-
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figurations on L4 (or L3T , L < T for propagators) lattices, are the average plaquette EP, the gauge
field mass term Eκ = 1

4L4

〈
∑x,µ ReUxµ

〉
, and the lattice version V of the vector condensate 〈Aµ〉.

The vector condensate V is the order parameter for the FM-FMD transition. It is zero for all other
phases except FMD. For first order FM-FMD transition, the quantity Eκ goes through a finite jump
when plotted against κ . However, for continuous FM-FMD transition, the finite jump vanishes and
Eκ is continuous across the transition. Out of all the phase transitions to be presented here, the one
of prime importance to us is the FM-FMD, and the location and nature of this transition including
the tricritical points naturally attracted most of our attention.

In Fig. 1 all data points represented by solid (filled) symbols signify a continuous phase tran-
sition, while all data points represented by empty (unfilled) symbols signify a first order transition.
Accordingly, one would find that FM-PM and PM-AM phase transitions are continuous and PM-
FMD phase transition is first order, for all gauge couplings investigated.

For values of the gauge coupling g > 1, the FM-FMD phase transition develops a first order
part for smaller values of κ̃ , as seen for g = 1.3 in the left panel of Fig. 1. At g = 1.1 (not shown),
in our simulations on 164 lattice, the FM-FMD phase transition first shows a little glimpse of its
first order part for small values of κ̃ and then quickly turns itself into a continuous transition at
a tricritical point at (κ̃, κ) ∼ (0.14,−0.33) and remains continuous for larger values of κ̃ . As the
gauge coupling g is further increased, the location of the tricritical point in the (κ̃ , κ)-plane shifts to
larger κ̃ and more negative κ . In other words, the first order part of the FM-FMD phase transition
extends quite rapidly with increase of the gauge coupling. However, it appears from our numerical
simulations (which includes gauge couplings g > 1.5, corresponding data not shown here) that,
given a large gauge coupling there is always a sufficiently large κ̃ beyond which the FM-FMD
transition is continuous. In addition, the FM-FMD transition overall shifts to larger negative κ

values at stronger gauge couplings.
While the bare WCPT done around the point g = 0 and κ̃ = ∞ has limited range of applica-

bility, there exists no phase transitions between the WCPT corner of the 3-dimensional coupling
parameter space (viz., g = 0 and κ̃ = ∞) and any point on the continuous part of the FM-FMD
transition at a strong gauge coupling and a large enough κ̃ . The schematic phase diagram in the
3-dimensional parameter space (g, κ̃, κ) is displayed on the left panel in Fig. 2. Kindly note that
κ = 0 surface is located slightly below the top surface of the 3-dimensional box presented in the
figure. The diagram is drawn based on available data on phase transitions and interpolations and
extrapolations. The continuity of the entire FM-FMD transition surface (bounded by the tricritical
line starting at g= 1.1) up to the WCPT corner is clearly evident when we look at the 3-dimensional
phase diagram. Hence it is natural to expect that this whole region falls under the same universality
class and the continuum physics obtainable should be no different from that near the weak gauge
coupling region.

The inverse of photon propagator (2-point correlator of ImUxµ ) in momentum space was also
measured and is plotted against the square of lattice momentum p̂2 (discrete on a finite box) on the
right panel in Fig. 2 for the continuous part of the FM-FMD transition, staying in the FM phase.
Inset shows a gradually vanishing photon mass (y-intercept), as κ approaches κFM−FMD (∼−1.07)
for the given fixed κ̃ (0.6), suggesting an expected scaling of the photon mass at the transition and
recovery of gauge symmetry. The slope of the fitted straight lines, in the main figure, suggests a
field renormalization constant Z that is not unity. However, the figure shows that the slope increases

6
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Figure 2: Left: Schematic phase diagram in the 3-dimensional (g, κ̃, κ) parameter space at gauge coupling
based on available data on 164 lattice. Surfaces of different phase transitions are labelled by: I: FM-FMD
(continuous), II: FM-FMD (first order), III: FM-PM (continuous), IV: PM-AM (continuous), V: PM-FMD
(first order). A tricritical line separating the first order and the continuous FM-FMD transitions emerges at
g > 1 and continues to move towards larger κ̃ at stronger gauge coupling g. The arrow at the top right points
to the WCPT corner (g = 0, κ̃ → ∞). Right: Inverse photon propagators in the FM phase near FM-FMD
transition at g = 1.3 and at three values of κ̃ for which the transition is continuous. Inset shows scaling of
the photon mass as FM-FMD transition is approached from FM side.

with increasing κ̃ . It seems reasonable to expect the slope to approach unity at large κ̃ , consistent
with WCPT at g = 0 or κ̃ = ∞.

3. Equivariant BRST for SU(2) lattice gauge theory

3.1 Introduction

Equivariant BRST (eBRST) formalism on the lattice was suggested by Schaden [10] for SU(2)
and later extended by Golterman and Shamir [11] for SU(N) gauge theories. In this formalism, the
gauge-fixing is done on a coset leaving minimally a Cartan subgroup. The nilpotency of usual
BRST is modified in eBRST in the following sense: a double variation results in an infinitesimal
gauge variation of the subgroup. Hence nilpotency is still valid for all operators invariant under the
subgroup. Another important consequence, not seen in usual BRST, is the presence of a 4-ghost
term, which is responsible for evading the no-go theorem. Golterman and Shamir was able to write
down an extended eBRST action invariant under eBRST and anti-eBRST. It was also possible to
write down a lattice action for the extended eBRST theory keeping all the internal symmetries.

We have initiated a first-time numerical investigation of the eBRST theory for the gauge group
SU(2) [4]. In this special case of SU(2), the extended eBRST formalism reduces to the ordinary
eBRST, and the only possibility of the coset is SU(2)/U(1). The ghost and anti-ghost fields C and
C̄, and the usual auxiliary fields B reside only in the coset.

For the SU(2) Yang-Mills theory, the gauge field is split as in the following,

V a
µ τa = Ai

µτi +W α
µ τα , with a = 1,2,3, i = 3 & α = 1,2. (3.1)

7
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The generators τa = σa/2, where σa are the Pauli matrices. The ghost sector fields are a linear com-
bination of the generators τ1 and τ2. With the auxiliary field B integrated out, the total Lagrangian
density for the gauge-fixing part is

L
SU(2)

GF =
1
g̃2 tr

(
Dµ(A)Wµ

)2
+L

(2)
gh +L

(4)
gh , where,

L
(2)

gh = −2tr
(
CDµ(A)Dµ(A)C

)
+2tr

(
[Wµ ,C][Wµ ,C]

)
,

L
(4)

gh = −tr
(

X̃
)2

, with X̃ = i{C,C}. (3.2)

L
(2)

gh and L
(4)

gh are respectively the two and four ghost terms and g̃2 = ξ g2 is the gauge-fixing
coupling. The gauge-fixing function Dµ(A)Wµ = ∂µWµ + i[Aµ ,Wµ ] is in the coset SU(2)/U(1)
and is covariant under U(1) gauge transformations.

3.2 Lattice action, invariance theorem and the reduced model

The total eBRST gauge-fixed SU(2) action on the lattice is given as

S = SW +Sg f , (3.3)

where SW is the usual Wilson plaquette action,

SW =
β

2 ∑
x,µ<ν

Re tr
[
1−Pxµν

]
, β = 4/g2. (3.4)

The eBRST gauge-fixing term, with introduction of a new single-component real auxiliary field
ρx = ρx3τ3 to take care of the four-ghost interaction term, is given as

Sg f =
1

2g̃2 ∑
xα

(D−µ Wxµ)
2
α +

1
2g̃2 ∑

x
(ρx3)

2 + ∑
xyαβ

CxαMxα,yβCyβ

= κ̃ ∑
xα

(D−µ Wxµ)
2
α + κ̃ ∑

x
(ρx3)

2 + ∑
xyαβ

CxαMxα,yβCyβ . (3.5)

The lattice eBRST gauge-fixing function,

D−µ Wxµ = Wxµ −U†
x−µ,µWxµUx−µ,µ , (3.6)

with the lattice equivalent of the coset gauge field Wµ(x),

Wxµ ≡ −i
[
UxµTiU†

xµ ,Ti
]
=Wxµ +O(V 2), (3.7)

goes to Dµ(A)Wµ in the classical continuum limit.
The ghost matrix, M(U,ρ) = Ω(U)+R(ρ), is real, with the gauge-field dependent Ω being

symmetric and Rxα,yβ = δxyρx3 f3αβ being antisymmetric in the coset indices. The matrix element
Ωxα,yβ is explicitly given by

Ωxα,yβ = 2δαβ δxytr
(

U†
y−µ,µτ3Uy−µ,µτ3 +Uyµτ3U†

yµτ3

)
−2εαδ εβγδx,y−µ tr

(
UyµτγU

†
yµτδ

)
−2εαγεβδ δx,y+µ tr

(
UyµτγU

†
yµτδ

)
. (3.8)
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In Eq.3.5, the parameter κ̃ ≡ 1/2g̃2 = 1/2ξ g2 has been introduced as in Eq.2.7. The right
hand side of Eq.3.5 is the starting point of the numerical calculation. The simulation is done in the
parameter space of β and κ̃ . This will be denoted as the full theory from now onwards, as opposed
to the reduced model to be discussed later.

A mass term for the lattice coset gauge field Wxµ and for the ghost field Cx, together invariant
under on-shell eBRST transformations, can be added in the action in Eq. 3.3, as

Smass = m2
∑
x

[
−4 κ̃ tr(Uxµτ3U†

xµτ3)+2tr(CxCx)
]
. (3.9)

However, the mass term, although eBRST-invariant, is not eBRST-exact, i.e., it cannot be expressed
as an eBRST variation of something else.

It can be explicitly shown that the no-go theorem is evaded in the eBRST formalism since the
eBRST partition function can be shown to be a non-zero constant. This turns out to be true also
with the addition of the mass term (3.9). Unlike in the BRST case, the ghost integral is non-zero
due to the presence of the four-ghost term in the eBRST formalism. A direct consequence of the
above is an invariance theorem that makes the expectation value of a gauge-invariant operator in
the eBRST theory equal to that in the unfixed theory. In the massive eBRST case, however, the
equality should hold for unfixed theory with massive gauge fields in the coset. The invariance
theorem is a rigorous result from eBRST symmetry on a finite lattice.

The theory on the gauge orbit is the so-called reduced model. It is an interacting theory of
the longitudinal gauge degrees of freedom (lgdof ) and ghost fields. The reduced limit is taken by
setting the gauge coupling g = 0. As a consequence of the invariance theorem, the reduced model
is found to be topological field theory (TFT), as the partition function of the reduced model is just
a number independent of the gauge-fixing coupling g̃.

As described in the context of the U(1) theory previously, the full theory action S[U ] is given
a gauge transformation to obtain S[φUφ †] with lgdof φ . The gauge fields U are then set to 1 to
arrive at the reduced model action Sred. The action of the reduced model of the eBRST gauge-fixed
SU(2) theory, with lgdof as group-valued φ fields, is given as follows:

Sred = Sred
g f = 2κ̃ ∑

x
tr
[
−2
(

φxφ
†
x+µτ3φx+µφ

†
x τ3 +φxφ

†
x−µτ3φx−µφ

†
x τ3

)
× (ν−term)

+
1
2

(
φxφ

†
x+µτ3φx+µφ

†
x +φxφ

†
x−µτ3φx−µφ

†
x

)
× (ν−term)

]
+ κ̃ ∑

x
(ρx3)

2 + ∑
xyαβ

CxαMred
xα,yβ

Cyβ , (3.10)

where Mred
xα,yβ

is the reduced-model-ghost matrix.
The eBRST-invariant mass term of the reduced model,

Sred
mass = m2

∑
x

[
−4 κ̃ tr

(
φxφ

†
x+µτ3φx+µφ

†
x τ3

)
+2tr

(
CxCx

)]
. (3.11)

can also be added to the action in Eq. 3.10.
In addition to its eBRST-invariance, the reduced model is invariant under the remnant local

U(1) symmetry, corresponding to the unfixed part of the theory. The local U(1) transformation in
the reduced model acts on the φ field from the left, hence denoted here as U(1)L:

φ
′
x = hxφx, hx = exp(iθxτ3) ∈U(1)L. (3.12)
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The action is also invariant under a global SU(2)R transformation, acting on the φ fields from
the right, since all the terms have the φ fields present as φφ † combination:

φ
′
x = φxg, g ∈ SU(2)R. (3.13)

The ghost fields are Grassmann-valued and are not directly implemented in the computer.
However, they can be replaced by real-valued fields, similar to what is done in the pseudofermion
method used for fermions. The integration of the ghost fields in the partition function leads to,∫

DCDC exp(−CMC) = detM = |detM|sign(detM). (3.14)

|detM| can be simulated using HMC by introducing a real-valued scalar (“pseudo-ghost") field ϕ ,

|detM|=
√

det(MMT ) =
∫

Dϕ exp
(
−(1/2)ϕT (MMT )−1

ϕ
)
. (3.15)

Note that the notation ϕ is different from the φ field in the reduced model.
As a first calculation, one can ignore the sign of the ghost matrix determinant, which can be

shown to be real, and simulate the full theory and the reduced model using HMC without tracking
the sign. In the full theory, by computationally verifying the validity of the invariance theorem,
assuming unbroken eBRST, one can then identify regions of parameter space in (β , κ̃) where sign
changes occur and where they do not. A signature within the HMC that identifies increasingly poor
conditioning of the ghost matrix usually accompanied by a few eigenvalues getting small is the
divergence of the number of iterations for ghost matrix inversion and the related force term during
the course of the MD trajectory of the HMC. Such situations usually lead to the failure of HMC.

We have studied the full theory and the reduced model using HMC, ignoring the sign. We
have also done, in order to track the sign of the ghost matrix determinant, a first-time stochastic
implementation of the tunneling HMC (sTHMC) [12] in the full theory. However, in this write-up,
we are not going to present any results from sTHMC, since we are still to achieve a good control
over the efficiency of sTHMC.

3.3 Results for the eBRST gauge theory and the reduced model

It has been shown by analysis of perturbative 1-loop renormalization group (RG) equations in
[13] that the coupling g̃ in the gauge fixing sector (g̃2 = ξ g2 = 1/(2κ̃)), where ξ is the gauge fixing
parameter) is also asymptotically free, just like the non-Abelian gauge coupling g. Hence, dimen-
sional transmutation takes place and both these couplings can effectively become strong at infrared
scales Λ and Λ̃ corresponding to g and g̃. According to the findings in [13], two possibilities exist:
one where the Λ parameters are of the same order, the other where the Λ̃� Λ. Obviously, it is
an interesting question to ask about the nature of the strong coupling theory on the orbit, i.e., the
reduced model. Can strong dynamics of the lgdof lead to a SSB?

It was demonstrated in Ref. [14] through a toy model, that a phase transition can indeed
occur in a TFT through a non-trivial effective potential. The authors provided evidence of the
existence of a broken phase in the reduced model through a combination of strong coupling and
mean-field techniques: the global SU(2)R symmetry of the action spontaneously breaks in the
manner, SU(2)R → U(1)R. Although the existence of the SSB can only be verified through a
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controlled non-perturbative calculation, this and its effect on the full theory raises very interesting
possibilities. Our numerical simulations are aimed at finding the truth about these possibilities.

The quantity Ãx [14] can be used to signal the symmetry breaking of the global SU(2)R →
U(1)R in the reduced model. The expectation value

〈Ãx〉= 〈φ †
x τ3φx〉 (3.16)

transforms in the adjoint representation of SU(2)R and is invariant under the local U(1)L transfor-
mation. It is to be noted that, Ãx is not invariant under the modified eBRST transformation, but
since it is not a total eBRST variation, it cannot signal a possible spontaneous breaking of eBRST
symmetry.

In the numerical simulation, we have studied the length of the average Ã vector averaged over
many ensembles, given for a lattice volume V by

〈|Ã|〉=

〈√
3

∑
i=1

(
1
V ∑

x
πxi

)2
〉
, where πxi =

1
2

tr
(
Ãx τi

)
. (3.17)

〈|Ã|〉 6= 0 would signal the SSB: SU(2)R→U(1)R in the reduced model.
In our numerical study, a symmetry breaking seed

Sseed =−h tr
(
τ3Ãx

)
, (3.18)

is also used. If a seed is used, it is sufficient to compute the expectation value of π3, the τ3 compo-
nent of the average Ã for each configuration, and then gradually go to the limit h→ 0 for the order
parameter for the SSB. We have checked that, within the statistical errors, both procedures produce
the same result for the order parameter.

Since the gauge-fixing coupling, g̃ (related to κ̃ as κ̃ = 1/(2g̃2)), is asymptotically free, the
HMC algorithm faces critical slowing down as we make g̃ weaker, or equivalently κ̃ larger. On
the other hand, in the region where the gauge-fixing coupling g̃ is strong or κ̃ small (< 1.0), we
face problems with ghost matrix inversion using our BiCGStab inverter used for the purpose. For
the range of κ̃ between 1.0 and 10.0, the HMC on 84 lattices runs reasonably well for the reduced
model (with no mass terms added), although to get acceptance rates around 50%, we needed to
keep the MD step-size ∼ 0.005 and the number of MD steps in a trajectory within 10. This already
shows that the simulation in these systems is very difficult. Fortunately, despite the small step-size
and the number of MD steps, the integrated autocorrelation time is within acceptable limits (< 200)
and the system shows the desired fluctuation of the observables in its field configurations. As we
increase the lattice size to 124 and 164 (data not presented in this write-up), the autocorrelation
times increase quite rapidly, however, still within manageable limits of our resources for 124 .

The left panel in Fig. 3 clearly indicates presence of SSB in the reduced model for a wide
region of κ̃ . There appears to be a sharp transition to symmetry restoration at a small κ̃ very near
zero, roughly consistent with mean field calculations [14]. The broken phase appears to continue
to exist all the way to arbitrarily large κ̃ , i.e., the perturbative region of g̃.

It is of course very interesting to think about the effect of the SSB in the reduced model
on the full theory when the transverse gauge degrees of freedom are turned back on. However, the
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Figure 3: Left: Variation of 〈|Ã|〉 with κ̃ on 84 lattices, with m2 = 0.0 and h = 1.0. Right: Comparison
of plaquette expectation values 〈P〉 of unfixed and eBRST gauge-fixed theories at different β for a fixed
κ̃ = 1.0.

numerical simulation in the full theory is even harder. We have comprehensively scanned the region
β = 3.0−8.0 and κ̃ = 0.1−10 for m2 = 0.0 with the HMC algorithm. Unlike in the reduced model,
there is no region found in the full theory in the scanned β − κ̃ parameter space where the ghost
matrix inversions take place without issues. Generally, the number of iterations of the BiCGStab
inverter blow up or the inversion fails at some point during the field updation. The severity of
the inversion problem increases with decreasing β and/or decreasing κ̃ , i.e., with stronger gauge
and gauge-fixing couplings g and g̃ respectively. The symptoms generally indicate the presence of
near-zero eigenvalues of the ghost matrix. On the other hand, critical slowing down, in the form of
decreasing acceptance rate, is also found with increasing β and/or κ̃ , as also seen in the reduced
model for large κ̃ .

We have calculated the expectation value of the gauge-invariant plaquette for both unfixed
and gauge-fixed theories on the lattice to study the validity of the invariance theorem. Without a
symmetry breaking seed, the eBRST symmetry is exact, and on our finite lattices the invariance
theorem is strictly applicable. Hence under these conditions, any violation of the invariance theo-
rem appears to be an indicator of sign changes of the ghost determinant, something that our HMC
algorithm ignores.

The right panel in Fig.3 shows that the expectation value of the plaquette computed in the
eBRST theory becomes increasingly closer to the value computed in the unfixed theory with in-
crease of β . At β = 8.0, the largest shown in the figure, the values are almost equal to each other.
This observation coupled with the trend of the inversion problems with β is consistent with the
expectation that, in the perturbative limit (β → ∞) the ghost matrix determinant does not show any
change of sign. It seems reasonable to conclude that there are more and more sign changes as β

decreases.
Approximate manifestation of the invariance theorem, at least at our larger β values, is also

a validation for the eBRST gauge fixed theory as an alternate formulation of non-Abelian gauge
theory on the lattice. From the invariance theorem it also follows that the expectation value of a
gauge invariant operator should be independent of the gauge-fixing coupling. This was also verified
for the plaquette (not shown here).
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4. Conclusion and future directions

We have given an account of our study of non-perturbatively gauge-fixed lattice gauge theory,
with chiral gauge theory as a motivation and also as an alternate formulation of lattice gauge theo-
ries. The HD gauge-fixing proposal for the compact U(1) lattice gauge theory was shown to work
also at strong gauge couplings (g > 1) in the same way it was shown earlier to work at weak gauge
couplings. A triciritical line, obtained at strong gauge couplings in the 3-dimensional phase dia-
gram, appears to be the only candidate for any possible non-trivial behaviour. Through verification
of the invariance theorem, we have also numerically validated the eBRST gauge fixing formalism
for the SU(2) lattice gauge theory. Strong dynamics of the lgdof results in a SSB in the theory
on the gauge orbit, i.e., the reduced model, which is a TFT. It is interesting to ask what would be
the consequence of the strong dynamics of the lgdof in the full theory, that includes the transverse
gauge degrees of freedom. From strong coupling and mean field analysis [14], there is a phase with
no mass gap. However, to investigate these issues, we need to have better algorithms and a way to
track the sign changes of the ghost matrix determinant. Efforts are underway.
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