Main Image
Volume 334 - The 36th Annual International Symposium on Lattice Field Theory (LATTICE2018) - Physics beyond the Standard Model
Tantalizing dilaton tests from a near-conformal EFT
Z. Fodor, K. Holland, J. Kuti,* C.H. Wong
*corresponding author
Full text: pdf
Published on: 2019 May 29
Abstract
The dilaton low-energy effective field theory (EFT) of an emergent light scalar is probed in the paradigm of strongly coupled near-conformal gauge theories. These studies are motivated by models which exhibit small $\beta$-functions near the conformal window (CW), perhaps with slow scale-dependent walking and a light scalar with ${ 0^{++} }$ quantum numbers. We report our results from the hypothesis of a dilaton inspired EFT analysis with two massless fermions in the two-index symmetric (sextet) representation of the SU(3) color gauge group. With important caveats in our conclusions, conformal symmetry breaking entangled with chiral symmetry breaking would drive the near-conformal infrared behavior of the theory predicting characteristic dilaton signatures of the light scalar from broken scale invariance when probed on relevant scales of fermion mass deformations. From a recently reasoned choice of the dilaton potential in the EFT description~\cite{Golterman:2016lsd} we find an unexpectedly light dilaton mass in the chiral limit at $m_d/f_\pi = 1.56(28)$, set in units of the pion decay constant $f_\pi$. Subject to further statistical and systematic tests of continued post-conference analysis, this result is significantly lower than our earlier estimates from less controlled extrapolations of the light scalar (the $\sigma$-particle) to the massless fermion limit of chiral perturbation theory. We also discuss important distinctions between the dilaton EFT analysis and the linear $\sigma$-model without dilaton signatures. For comparative reasons, we comment on dilaton tests from recent work with fermions in the fundamental representation with $n_f=8$ flavors.
DOI: https://doi.org/10.22323/1.334.0196
Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.