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Our knowledge about the QCD phase diagram at finite baryon chemical potential µB

is limited by the well known sign problem. The path integral measure, in the standard
determinantal approach, becomes complex at finite µB so that standard Monte Carlo
techniques cannot be directly applied. As the sign problem is representation depen-
dent, by a suitable choice of the fundamental degrees of freedom that parameterize the
partition function, it can get mild enough so that reweighting techniques can be used.
A successful formulation, capable to tame the sign problem, is known since decades
in the limiting case β → 0, where performing the gauge integration first, gives rise to
a dual formulation in terms of color singlets (MDP formulation). Going beyond the
strong coupling limit represents a serious challenge as the gauge integrals involved in
the computation are only partially known analytically and become strongly coupled for
β > 0. We will present explict formulae for all the integral relevant for SU(N) gauge
theories discretised à la Wilson, and will discuss how they can be used to obtain a pos-
itive dual formulation, valid for all β, for pure Yang Mills theory.
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1. Introduction

Lattice QCD at finite baryon-chemical potential is affected by the sign problem. At non-
zero µB the LQCD action becomes complex giving rise to an exponentially hard prob-
lem. Although various techniques have been developed in the past decades in order to
circumvent the sign problem, an ultimate solution is still lacking. A promising approach
that we want to discuss here is the dual variables approach. The key point in this ap-
proach is realising that the sign problem is representation dependent. This means that
by a suitable change of the degrees of freedom, it is possibile to write down the parti-
tion function in terms of states that are closer to the true eigenstate of the Hamiltonian,
resulting in a much milder sign problem. Dual formulations have been used in the past
years to alleviate, or even solve, the sign problem in various model (see for instance [1]-
[3]). Here we want to discuss the dual approach in Yang-Mills theory and in full QCD
from the perspective of strong coupling expansion. At β = 0, corresponding to the strong
coupling limit, the partition function can be written in terms of dual (integer) degrees of
freedom representing mesons and baryons [4]. This dual formulation has the advantage
that the sign problem induced by a baryon-chemical potential is mild enough so that the
phase boundaries can be mapped out using standard reweighting in the sign. Incorpo-
rating leading order β-correction is also possible, by computing the modified weights in-
duced by a single plaquette excitation [5], whereas in [7] gauge contributions produced
by plaquette-surfaces have been taken into account. Going beyond these approximations
is very challenging. First of all, the link integrals that appear are not completely known
for SU(N). In addition, a plaquette induced sign problem can appear at β > 0, limiting
the applicability of this method to small β values. We will discuss these issues. In par-
ticular, we will solve the problem of link integration finding explicit formulae for polyno-
mial integrals over SU(N). After analysing the sign problem in SC-LQCD with plaquette
surface excitations, we will focus on Yang-Mills theory finding a dual, positive, represen-
tation by integrating out the gauge links.

2. Formulation and Link Integration

In the following we will always consider the standard LQCD partition function with
gauge action discretised à la Wilson and 1 flavour of unimproved staggered quarks:

Z =
∏
x

∫
dχxdχ̄xe

2amqχ̄xχx
∏
`

∫
G
dU`e

∑
p
β
N

Re(TrUp) ·eTr
[
U`M†`+U

†
`
M`

]
(
M†

)j
i

= ηµ(x)eaµBδµ,0χ̄ixχx+µ,j , Ml
k =−ηµ(x)e−aµBδµ,0χ̄kx+µχx,l, (2.1)

where (`,x,p) label lattice links, sites and plaquettes. After performing a strong coupling
expansion in β, Eq. (2.1) can be written as:

∏
x

∫
dχxdχ̄x e

2amqχ̄xχx
∑
{np,n̄p}

∏
`,p

(β/2N)np+n̄p

np!n̄p!

∫
G
dU`Tr[Up]npTr[U †p ]n̄peTr

[
U`M†`+U

†
`
M`

]

1



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
2
2
4

Towards a Dual Representation of Lattice QCD Giuseppe Gagliardi

and we introduced the new collective variables {np, n̄p} called plaquette (anti-plaquette)
occupation numbers. As usual for dual formulations, we wish to integrate out some of
the original degrees of freedom. In this case we want to get rid of the U` links, by explic-
itly performing the group integration first. Even though this is quite straightforward in
the case β = 0 [6], plaquette contributions give rise to serious complications. To show
this explicitly, let us consider the O(β) corrections to SC-LQCD by Taylor expanding the
gauge action to first order:∏
`

∫
G
dU` e

β
2N Tr[Up+U†p ] ·eTr

[
U`M†`+U

†
`
M`

]
≈
∏
`

∫
G
dU`(1 + β

2N Tr[Up+U †p ]︸ ︷︷ ︸
O(β)correction

) ·eTr
[
U`M†`+U

†
`
M`

]

The relevant O(β) contribution, after performing a hopping parameter expansion of the
fermionic action, is given by:∏

`∈C(p)

∫
G
dU`

β

2N Tr [Up] eTr
[
U`M†`+U

†
`
M`

]
= Tr

[ ∏
`∈C(p)

J`

]
, C(p) = {(x,µ) ∈ ∂p}

(J`[M,M†])nm =
∑
κ`,κ̄`

1
κ`!κ̄`!

κ∏̀
α=1

(M`)iαjα
κ̄∏̀
β=1

(M†`)
kβ
lβ
Ik`+1,k̄`
m+in+j,k l

(2.2)

where In+1,n is the polynomial gauge integral that must be computed at this order. The
open color indices {i, j,k, l} must be saturated with fermionic sourcesM,M† while m,n
are contracted along the countour ∂p of the plaquette p so that color singlets are recov-
ered afterwards. Away from strong coupling, where O(β2),O(β3), .., contributions are
important, all the integrals Ia,b will in general appear. Having explicit formulae for these
integrals is the first step towards a dual representation of non-abelian gauge theories in a
strong coupling expansion framework. Their explicit expression is given by:

Ia,b
ij,k l

=
∫
G
dU

a∏
α=1

U jαiα

b∏
β=1

(U †)lβkβ (2.3)

where dU is the usual invariant Haar measure and depending on the gauge group G the
following constraints apply:1

Ia,b 6= 0 ⇐⇒

a= b U(N)
a= bmodN SU(N)

(2.4)

These integrals were studied extensively in the past, mainly in the case G= U(N), which
was completely solved in [8]. Creutz [9] found an explicit formula for the generating func-
tional:

Za,b[K,J ] =
∫

SU(N)
dUTr[UK]aTr[U †J ]b

Ia,b
ij,k l

= 1
a!b!

(
∂

∂Kj1i1
. . .

∂

∂Kjaia

∂

∂Jl1k1

. . .
∂

∂Jlbkb
Za,b[K,J ])

)
K=J=0

(2.5)

1This gives a constraint on the {np, n̄p,k`, k̄`} that are allowed. For more details see [7].
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for the case b = 0, whereas recently Zuber computed the generating functional in the
case a = b+N [10]. We extended their results in order to cover the most general case
(a− b= q ·N), that we present here without proof:

Za,b[K,J ] =
∫

SU(N)
dUTr[UK]aTr[U †J ]b

n=min{a,b}= (qN +n)!
Nc−1∏
i=0

i!
(i+ q)! (detK)q︸ ︷︷ ︸

Baryonic contrib.

∑
ρ`n

W̃n,q
g (ρ,N)tρ(JK)

︸ ︷︷ ︸
Mesonic contrib.

W̃n,q
g (ρ,N) =

∑
λ`n

len(λ)≤N

1
(n!)2

f2
λχ

λ(ρ)
Dλ,N+q

, tρ(A) =
∏
ρi

Tr(Aρi) (2.6)

where λ ` n means that λ is an integer partition2 of size n, len(λ) is its length and Dλ,N ,
fλ are respectively the dimension of the irreps of SU(N) and Sn corresponding to parti-
tion λ. Finally, χλ(ρ) are the standard Sn irreducible characters. The generating func-
tional is splitted in two parts: the first, baryonic contribution, arises from a non-zero
q and, being a power of a determinant, gives rise to epsilon tensors after differentiating
with respect to source K. The second part, the mesonic contribution, is written as a sum
over integer partitions that select a particular SU(N) invariant (Trρ(JK)) weighted by
the corresponding factor W̃n,q

g (ρ,N). We called these functions W̃n,q
g , ”modified Wein-

garten functions” as they correspond to a simple generalization of the standard Wein-
garten functions obtained in [8]. They are all class functions of Sn as the partition ρ
can be identified as a conjugacy class of permutations [π] using the cycle decomposition.
This result for the generating functional can be directly used to systematically obtain
gauge corrections to any order by using:3

J a,b
ij,k l

[M,M†] =
∑

{iα,jα,kβ ,lβ}

(
κa∏
α=1
M iα

jα

) κb∏
β=1
M† kβlβ

Ia+κa,b+κb
ij,k l

= ka!kb!
(a+ka)!(b+kb)!

∂(a+b)Za+κa,b+κb [J,K]
∂Ki1

j1
..∂Kia

ja
∂Jk1

l1
..∂Jkblb

∣∣∣∣K=M†
J=M

(2.7)

3. Sign problem

Although the sign problem is very mild at strong coupling, it could happen that the in-
clusion of gauge degrees of freedom, in the dual formulation, reintroduce it. This kind
of sign problem is absent in the conventional formulation, where a sign problem is only
induced by a non-zero µB. Our result (2.7) for J a,b

ij,k l
can be used to understand how

the Monte Carlo weights get modified by plaquette excitations (see [7]). By making use
of the previous result, we performed simulation at finite β, using an algorithm which is

2i.e. λ ` n= [λ1, ...,λk] with
k∑

i=1
λi = n and λ1 ≥ λ2 ≥ ...≥ λk > 0. len(λ) = k.

3J a,b is a generalisation, to arbitrary high order, of the integral appearing in Eq. (2.2).
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affected by systematic errors only at order βNc . Results about the phase diagram and
details of the simulation can be found in [7]. Here we want to discuss what happens to
the sign problem: In Fig. 1 (Left), the average sign 〈σ〉 is plotted as a function of µB for
various β. The sign problem seems to be immediately reintroduced. Reweighting can be
applied only for β < 1, spoiling the possibility of making contact with the low coupling
branch. A sign problem is also present at µB = 0, making it clear that the gauge de-
grees of freedom alone, as they appear in the dual formulation, produce negative weights.
From a diagrammatic point of view, an example of a configuration with negative sign is
shown in Fig. 1 (Right). These findings suggest that to go beyond β = 1, we must study
first pure Yang-Mills theory. In particular, we worked on the problem of finding a posi-
tive (dual) representation valid for all β, which will be the topic of the next section.
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Figure 1: Left: The average sign 〈σ〉= Z
Zpq

= e−
V
T
a4∆f obtained by simulations on a 43×4

lattice is shown as a function of the chemical potential aµ for various β. Right: An ex-
ample of a configuration with negative sign. An odd number of monomers are trapped in
a plaquette surface surrounded by a quark-flux.

4. Dualization of pure Yang Mills theory

Let us consider the partition function for pure Yang-Mills theory and expand it in Taylor
series around β = 0:

ZY.M. =
∑
{np,n̄p}

(β/2N)
∑

p
np+n̄p∏

p
np!n̄p!

∏
`

∏
p

∫
SU(N)

dU` (TrUp)np
(
TrU †p

)n̄p
︸ ︷︷ ︸

W({np,n̄p})

(4.1)

To successfully dualize the partition function, we must find a way to integrate out the
gauge fields U`, expressing the quantity W ({np, n̄p}) in terms of auxiliary degrees of free-
dom. One way to do this is by decomposing the underlying Ia,b integrals by making use

4
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of the Weingarten functions as follows:4

In,n
ij,k l

=
∑

σ,τ∈Sn
W̃n,0
g (

[
σ ◦ τ−1],N)δlσi δ

j
kτ

⇒ W ({np, n̄p}) =
∑

{σ`,τ`∈Sd`}

∏
`

W̃ d`,0
g (

[
σ` ◦ τ−1

`

]
,N)︸ ︷︷ ︸

≷0

∏
x

N len
([
σ̂x◦π̂x

])
(4.2)

This procedure trades the coloured gauge links U`, with pair of permutations (σ`, τ`).
The size of each permutation is determined by the dimer number d`, defined by:

d`=(x,µ) := min


∑
ν>µnx,µ,ν + n̄x−ν,µ,ν∑
ν>µ n̄x,µ,ν +nx−ν,µ,ν

}
(4.3)

The open color indices of the delta functions appearing in Eq. (4.2) are saturated along
the plaquettes to reproduce the traces in Eq. (4.1). This gives rise to powers of N . In
Eq. (4.2), the permutation σ̂x depends only on {np, n̄p} and tells us how the colour flux
is re-oriented at each lattice site, while π̂x permutes the colour flux on the links attached
to x and is defined by:

π̂x =
d−1⊗
µ=0

(
σ(x,µ)⊗ τ(x−µ,µ)

)
(4.4)

then len
([
σ̂x◦ π̂x

])
is the number of colour cycles at site x. This formulation, as it stands,

is not suitable for Monte Carlo simulations as almost half of the Weingarten functions
appearing in Eq. (4.2) are negative (see [7]). Neverthless, it turned out that is possible
to rearrange the terms in Eq. (4.2) in such a way that W{np, n̄p} is written as a positive
sum:

W ({np, n̄p}) =
∑
{λ``d`}

len(λ`)≤N

∑
{σ`,τ`∈Sd`}

∏
`

1
d`!2

f2
λ`
Ma`,b`
λ`

(σ`)M b`,a`
λ`

(τ−1
` )

Dλ`,N

∏
x

N len
([
σ̂x◦π̂x

])
(4.5)

where Ma,b
λ (π) is a matrix representation of the irrep λ of Sn and a,b = 1, ...,fλ. We will

choose M to be orthogonal matrices5. After working out the sum over permutations,
Eq. (4.5) can be cast in the following form:

W ({np, n̄p}) =
∑
{λ``d`}

len(λ`)≤N

W ({np,n̄p},{λ`})≥0︷ ︸︸ ︷∑
a`,b`

∏
`

1
Dλ`,N

∏
x

w(x)

 (4.6)

P a,bλ`n = fλ
n!

∑
π∈Sn

Ma,b
λ (π)δπ, w(x) = 〈

d−1⊗
µ=0

`=(x,±µ̂)

P a`,b`λ``d` , δσ̂x〉nx , nx =
d−1∑
µ=0

(dx,µ+dx−µ,µ)

4For simplicity we illustrate the procedure in the U(N) case.
5As Sn is a finite group we can always choose unitary irreps. For the specific case of Sn it turns out

that the matrix elements are also real.
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where
{
P a,bλ`n

}
are a complete set of orthogonal operators in (CN )⊗n and the inner prod-

uct 〈.〉n is defined as:

〈A,B〉n := Tr(A†B) A,B ∈ End
(
(CN )⊗n

)
. (4.7)

Therefore, by adding partitions λ` as an auxiliary degree of freedom, we end up with a
partition function that contains only positive terms. However, the possibility of perform-
ing Monte Carlo simulations using Eqs. (4.1), (4.6), depends on how fast we can compute
the weights in Eq. (4.6). Each term involves a sum over

∏
` f

2
λ`

local quantities making a
brute force computation infeasible in d > 2. To overcome this issue one possible strategy
is to tabularize the weights (as they are β-independent) or to make use of Tensor Net-
work methods to speed up the computation, which we plan to do in the future.

5. Conclusion

We have studied dualization in QCD and in pure Yang-Mills theory from the point of
view of the strong coupling expansion. We have solved the problem of computing poly-
nomial integrals over SU(N) which appear in the procedure of integrating out the gauge
links. We showed that plaquette excitations in a naíve strong coupling expansion of the
gauge action, produce a strong sign problem which limits the use of reweighting to β < 1.
As this kind of sign problem is induced by a non-zero β, we focused on pure Yang-Mills
theory, finding a basis where the gluon dynamics does not give rise to a sign problem.
This dual basis, where the states are labelled by {np, n̄p} and by integer partitions λ`,
can reduce the sign problem in full QCD at finite β.
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