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Quantum computers have the potential to solve certain problems in lattice gauge theory that are
thought to be exponentially hard for classical computers. The proposed starting point for such
computations has been the Kogut-Susskind Hamiltonian supplemented by the Gauss law con-
straint, with a cutoff on electric field values. There are several disadvantages to this approach,
including having to simulate the vast unphysical part of the Hilbert space. We consider pure U(1)
gauge theory, and, motivated to restrict the calculation to purely physical states, are immediately
led to a duality transformation. We highlight the potential advantages this formulation of lattice
gauge theory could have for simulations on quantum computers.
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Gauss’s Law in Hamiltonian LGT Jesse R. Stryker

Wilson’s path integral construction provides a nonperturbative definition of lattice gauge the-
ory and an efficient computational tool for some types of calculations. However, even for Quantum
Chromodynamics (QCD) many properties lack a first-principles understanding, such as the phase
diagram at finite chemical potential, real-time dynamics, topological properties, and the structure
of all but the lightest nuclei. Such investigations entail sign problems that are exponentially hard to
solve on a classical computer. Quantum computers offer hope for surmounting these obstacles and
a number of papers have proposed using the Kogut-Susskind [1] lattice Hamiltonian HKS as a start-
ing point for the study of gauge theories, introducing a cutoff on the electric field in order to render
the Hilbert space H finite-dimensional [2, 3, 4]. The vast majority of states in H are unphysical;
the physical space is limited to those obeying Gauss’s Law, [5] which we call Hphys ⊂H.

There are a couple of drawbacks to this approach which we address here: (i) It appears prefer-
able to work entirely in Hphys if possible, in order to require fewer qubits and to avoid computa-
tional errors causing states initially in Hphys to evolve into the large space of unphysical states; (ii)
A cutoff on electric fields is appropriate for strong coupling, for which electric fluctuations are sup-
pressed, but is not ideal for weak coupling, such as one would encounter in the continuum limit for
any gauge theory in d < 3, or asymptotically-free theories in d = 3, where d is the spatial dimen-
sion. Instead, a cutoff on magnetic fluctuations would likely be a more efficient regulator, allowing
one to approach the continuum limit with a smaller Hilbert space. In this work we examine these
issues in two of the simplest gauge theories – U(1) theories without matter in d = 2 and d = 3 –
and find that both concerns lead directly to a formulation of the electromagnetic dual theory. While
these theories are not of direct physical interest, they are simple enough to clearly illustrate some
of the issues that must be faced when simulating U(1) gauge theories with matter, or non-Abelian
gauge theories.

1. U(1) Hamiltonian and Hilbert space

The continuum Hamiltonian for a U(1) gauge theory is Ĥ = (1/2)
∫

ddx(Ê2 + B̂2), where the
electric field Êi is the momentum conjugate to the vector potential Âi. Here we consider compact
U(1) gauge theory formulated on a spatial lattice L with lattice spacing as, periodic boundary
conditions, and coordinates {n, `̀̀, ppp,ccc} for sites, links, plaquettes, and cubes, respectively. Compact
U(1) theory is interacting at finite as; because time and space are treated asymmetrically, there
are two coupling constants gt,s which must be independently renormalized, with dimensionless
couplings defined as g̃2

t,s = a3−d
s g2

t,s. The continuum limit is equivalent to g̃2
t,s → 0 for d < 3 (as

well as for asymptotically-free non-Abelian gauge theories in d = 3). We fix A0 = 0 gauge, and
replace the vector potential A(x) by a unitary operator Û`̀̀ = exp(igsasÂ`̀̀) on every link. The space
H can be represented in the coordinate basis of product states ⊗`̀̀ |U`̀̀〉, where |U`̀̀〉 at each link `̀̀

diagonalize Û`̀̀ . Alternatively, one can work in a momentum basis that diagonalizes the electric
field Ê`̀̀ also residing on the links. The two operators are related by the commutation relation[

Ê`̀̀,Û`̀̀′

]
= δ`̀̀,`̀̀′Û`̀̀ , Ê`̀̀ ≡ a

d+1
2

s Ê`̀̀/g̃s , (1.1)

where the rescaled field Ê`̀̀ has integer eigenvalues ε`̀̀ . H can then be described using the electric
field basis of product states⊗`̀̀ |ε`̀̀〉 and regulated in a gauge-invariant way by restricting fluctuations
of the electric field, |ε`̀̀| ≤ N for some cutoff N [2].
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Our starting point for the lattice Hamiltonian is Ĥ = ĤE + ĤB, with

ĤB =
1

2as

1
g̃2

s
∑
ppp

(
2− P̂ppp− P̂†

ppp
)
, ĤE =

1
2as

g̃2
t

ξ 2 ∑
`̀̀

(
2− Q̂`̀̀− Q̂†

`̀̀

)
, (1.2)

and where we define

Q̂`̀̀ ≡ eiξ Ê`̀̀ , P̂n,i j ≡ Ûn,iÛn+ei, jÛ
†
n+e j,iÛ

†
n, j . (1.3)

Here ĤB is conventional with P̂ppp being the usual plaquette operator, but in ĤE we have introduced
the dimensionless parameter ξ for convenience; eq. (1.2) yields ĤKS in the limit ξ → 0. This
Hamiltonian is similar to that of Z(N) gauge theory in [6]. The parameter at ≡ ξ as can be thought
of as a “temporal lattice spacing,” and additional irrelevant terms subleading in at could be added,
but the above symmetric form suits our purposes best. Eq. (1.1) implies that Û acts as a raising
operator for the electric quantum number, and can be expressed in the electric field basis as Û =

∑ε |ε +1〉〈ε|. The action of P̂, therefore, is to create an oriented loop of unit electric flux around
the edge of the plaquette, while P̂† creates a unit loop in the opposite direction. At the same time, P̂
measures magnetic field, the phase of its eigenvalue being the magnetic flux through the plaquette
to leading order in as. The above form for Ĥ is bounded and written as a sum of unitary operators,
which may be convenient for simulation by quantum walks [7].

Note that fluctuations in the magnetic field are large at strong coupling, while electric fluctu-
ations are large at weak coupling. This is similar to the case of a harmonic oscillator with mass m
and spring constant k, where 〈x̂2〉∝ 1/

√
km, while 〈p̂2〉∝

√
km, the operators x̂, p̂ being analogues

of B̂, Ê respectively, while m∼ 1/g̃2
t and k ∼ 1/g̃2

s . This suggests that regulating the theory with a
cutoff on electric field values is a poor choice for gauge theories in d < 3, as the continuum limit
occurs in the weak coupling limit.

The physical subspace Hphys ⊂H consists of those states obeying the Gauss law constraint
~∇ ·~E = 0. On the lattice, the analogue constraint is that at each lattice site the product of the Q̂s on
each outgoing link and Q̂†s on each incoming link must equal the unit operator:

∏
`̀̀ into n

Q̂`̀̀ ∏
`̀̀ out of n

Q̂†
`̀̀ |phys〉= |phys〉 . (1.4)

Most states in H violate eq. (1.4) and are unphysical, and therefore simulating Hamiltonian evolu-
tion in H will use more qubits on a quantum computer than physically necessary. To better under-
stand this constraint, consider the lattice L with periodic boundary conditions in d = 2,3 dimensions
with n sites, and therefore ` = nd links, p = nd(d− 1)/2 plaquettes, and c = nd(d− 1)(d− 2)/6
cubes. The Hilbert space H is characterized by the eigenvalues of the ` electric field variables, Q̂`̀̀ .
States fall into topological sectors labeled by an integer-valued d-tuple, ννν = (ν1, . . . ,νd) designat-
ing νi units of electric flux wrapping around the ei direction of the lattice. For a given topological
sector we have (n+d−1) constraints on the `= nd electric field variables: (n−1) constraints from
Gauss’s law and d from fixing the topology. Therefore there are [nd− (n+d−1)] = (n−1)(d−1)
variables to describe physical states in a particular topological sector. If we place a cutoff on elec-
tric field values to regulate the theory, and assume n� 1, then the minimum number of qubits
required to describe Hphys will scale as (d−1)/d times the minimum number required for H; this
ratio is expected to be significantly smaller for non-Abelian theories.
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The benefit of restricting a computation to Hphys is not only in reduction of qubits, but also
in ensuring that computational errors do not propagate states into the unphysical part of H, a
process that would look like violation of charge conservation. A brute force approach for restricting
H→Hphys is to eliminate the constrained variables by solving the operator constraint. (For more
details on this solution, we refer the reader to [8].) A heavy price is paid, however, in the loss
of locality and discrete translational invariance of the resulting Hamiltonian. We next describe an
alternative procedure, which leads directly to a duality transformation.

2. U(1) dual formulation

Physical states can be defined in terms of gauge-invariant operators acting on the trivial state
|0〉 with zero electric field everywhere [1]; those operators can be constructed out of Wilson loops
– products of Û`̀̀ along closed paths. We first define the Polyakov loop operators Ŵ (Ci) to be the
product of oriented Û link operators along a closed loop Ci that wraps around the lattice in the ei

compact direction. We then define the state

|ννν〉 ≡
d

∏
i=1

(
Ŵ (Ci)

)νi |0〉 , νi ∈ Z . (2.1)

All the physical states within a topological class are then created by acting on |ννν〉 with powers of
plaquette operators:

|A 〉
ννν
= ∏

ppp

(
P̂ppp
)Appp |ννν〉 , Appp ∈ Z , (2.2)

where ppp runs over all p plaquette coordinates. It is evident that |A 〉
ννν
∈ Hphys for all A and ννν

since both the Ŵ and P̂ operators are gauge-invariant, each producing only closed loops of electric
flux. It is also easy to see that any of the ⊗`̀̀ |ε`̀̀〉 basis states obeying Gauss’s law can be written
in this form. The particular choice of the Ci paths is unimportant, since two such paths can be
deformed into each other by the application of plaquette operators. The problem now, however, is
that the |A 〉

ννν
states are an over-complete basis for Hphys, since a state in a particular topological

sector depends on p = nd(d−1)/2 variables instead of the required (n−1)(d−1). The number of
redundant A variables is therefore R= (d−1)[1+(d−2)n/2]. For d = 2, the redundancy is R= 1,
independent of the number of sites n; for d = 3, R = 2+n, scaling with the volume of the lattice.
These redundancies arise because the product of plaquette operators around any closed surface is
an identity operation, expressing the discretized integral form of ~∇ ·~B = 0; R simply counts the
number of independent closed surfaces. We will deal with the redundancy by treating all of the
|A 〉

ννν
states as independent, then subsequently imposing the magnetic Gauss law constraint.

The action of the Hamiltonian eq. (1.2) on the |A 〉
ννν

states is simple to characterize: ĤB applies
plaquette operators to the state, and therefore either raises or lowers Appp by one. ĤE measures the
electric field, which at each link is determined by differences between the Appp for plaquettes it
borders — with a possible additional contribution from the Polyakov loop in eq. (2.1) if the link
lies along one of the Ci curves. ĤE therefore looks like a finite difference operator acting on Appp.
The behavior of HB and HE can be most naturally described in terms of operators on the dual lattice.
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We first discuss the simpler case of d = 2, where the duality transformation maps the {n, `̀̀, ppp}
coordinates of L to {ppp?, `̀̀?,n?}, respectively, on the dual lattice L?. n sits at the center of plaquette
ppp?, and vice versa, while `̀̀? and `̀̀ intersect each other; our convention is that x-links of the two
lattices are oriented anti-parallel to each other, while the y-links are parallel. By ignoring the
redundancy in our definition of |A 〉

ννν
in eq. (2.2), we can treat An? as an independent variable on

each site and use product states⊗n? |An?〉 as a basis for a Hilbert space H?. In terms of these states,
we can define the two local coordinate and shift operators, Ûn? and Q̂n? , living on sites of L? as

Ûn? = ∑
An?

|An?〉eiξAn? 〈An? | , Q̂n? = ∑
An?

|An? +1〉〈An? | . (2.3)

For a given topological sector ννν , the matrix elements of the Hamiltonian Ĥ of eq. (1.2) between
the |A 〉

ννν
states are reproduced then by the dual Hamiltonian Ĥννν on L?,

Ĥννν =
1

2as
∑
n?

[
1
g̃2

s

(
2− Q̂n?− Q̂†

n?

)
− g̃2

t

ξ 2 a2
s Û

†
n?∆Ûn?

]
(d = 2). (2.4)

Above, ∆ is a discrete covariant Laplacian ∆ = D+
i D−i , where D+

i are the difference operators

D+
1 Fn? = (W{n?,n?−e1}Fn?−e1−Fn?)/as ,

D+
2 Fn? = (W{n?,n?+e2}Fn?+e2−Fn?)/as , (2.5)

D−i ≡−
(
D+

i

)†, and the discrete vector gauge field W accounts for the topological charges ννν :

W`̀̀? = eiξ νi , if `̀̀ ∈Ci ; 1, otherwise ; (2.6)

`̀̀? being the link dual to `̀̀. Note that D+
1 is a derivative in the −e1 direction because on L? we have

oriented the x-links anti-parallel to those on L, unlike the y-links, which are parallel. The gauge
symmetry associated with W reflects the equivalence of constructions based on different Ci paths
for the Polyakov loops in eq. (2.1).

The first term in eq. (2.4) arises from ĤB, while the second from ĤE , and we see that the roles
of the two have been reversed: ĤB becomes an operator that translates the value of the dual field A ,
while ĤE measures gradients in A . The discrete gauge field W corresponding to the topological
electric fields of the original theory seems to have no analogue in the original theory, but that is
simply because we did not build in topological magnetic field loops; to do so would require a field
analogous to W added to the original Hamiltonian Ĥ.

As mentioned above, there is one redundant variable arising from the fact that ∏ppp P̂ppp = 1̂. Thus
the restriction to Hphys ⊂H? requires applying the single constraint on physical states(

Q̂L?− 1̂
)
|A 〉

ννν
= 0 , Q̂L? ≡∏

n?

Q̂n? . (2.7)

This constraint can be solved by setting A = 0 at a single site n? and equating Q̂ at that site to
the product of Q̂† over all the other sites — again at the cost of sacrificing locality and discrete
translational invariance. A more attractive alternative is to work directly in H? and simply use
an initial wave function that satisfies eq. (2.7). Unlike in the conventional formulation, where the
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number of constraints scales with the number of lattice sites, here with only a single unphysical
variable, the problems of constructing the initial state obeying the constraint — or of subsequently
wandering into the unphysical subspace due to computational error — should be vastly diminished
compared to simulations in the original space H subject to eq. (1.4). Because there is one Q̂n? ,Ûn?

variable pair per site on L?, as compared with two Q̂`̀̀,Û`̀̀ variable pairs per site on L, we see the
expected (d− 1)/d = 1/2 reduction in degrees of freedom, which should correspond to a similar
reduction in the number of qubits required to characterize the system. Now, to better substantiate
this reduction, we must regulate H? to make it finite-dimensional.

To regulate the dual theory in d = 2 one cannot simply limit An? to lie in the finite range−N ≤
ˆAn? ≤ N, taking N → ∞ in the continuum limit: the operator Q̂L? shifts the ˆAn? field uniformly

so that the constraint eq. (2.7) cannot hold in a space spanned by eigenstates of the ˆAn? with finite
eigenvalues. Instead, one can regulate the eigenvalues of the unitary Q̂n? operators, equivalent to
placing a cutoff on magnetic field fluctuations in the original theory. The regulated Hamiltonian
will then commute with the constraint, and an initial wave function chosen to satisfy the constraint
eq. (2.7) will continue to do so as it evolves. Therefore, in d = 2, there are several advantages
to simulating Ĥννν on a quantum computer instead of Ĥ: (i) the variables are scalars, rather than
vectors, reducing the number of degrees of freedom by half; (ii) there is a single redundant variable,
rather than the (n− 1) unphysical variables in the conventional formulation; (iii) it is natural to
regulate magnetic fluctuations rather than electric, which is likely to converge more efficiently to
the continuum limit.

The Hamiltonian in d = 3 for the |A 〉
ννν

states of eq. (2.2) can be constructed along similar
lines [8]; one is again led to a duality transformation, interchanging the coordinates for sites, links,
plaquettes and cubes from L to L? as {n, `̀̀, ppp,ccc} ↔ {ccc?, ppp?, `̀̀?,n?}. In particular, the plaquettes ppp
on L get mapped to the links `̀̀? on L? piercing them in the direction opposite to their normal vectors,
so that L? is parity inverted relative to L. Therefore the plaquette variable Appp on L gets mapped to
a dual vector field A`̀̀? living on the links of L?, unlike in d = 2 where a scalar An? lives on sites.
We can then define link operators Û`̀̀? and Q̂`̀̀? operators exactly as in eq. (2.3). The |A 〉

ννν
states in

eq. (2.2) are again over-complete, but the problem is more severe than in d = 2 since the product
of plaquette operators on the surface of any cube ccc in L should be an identity transformation, the
number of cubes scaling with n. The constraint on the dual lattice to remove this degeneracy is
(unsurprisingly) the dual of the electric Gauss law constraint eq. (1.4): the same equation with the
substitution Q̂`̀̀ → Q̂`̀̀? . Thus, we see a “conservation of difficulty” between the original and dual
theories for d = 3, each form of the theory having a Gauss law constraint of identical form. The
one advantage of the dual formulation shared with d = 2 is that regulating the eigenvalues of the
Q̂ operators controls magnetic fluctuations, which we expect to be more efficient at weak coupling
than a cutoff on the electric field.

3. Conclusions

We have focused here entirely on U(1) gauge theories without matter and have shown the con-
sequences of defining these theories on the space of gauge-invariant states. In particular, we found
that this leads to a dual formulation subject to a magnetic Gauss law constraint. This result can
lead to a substantial reduction of variables in d = 2, but not in d = 3; in both cases though it offers
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the opportunity to regulate the theory by limiting magnetic fluctuations rather than electric, which
is expected to be advantageous in approaching the continuum limit in d = 2, or studying the weak
field limit in d = 3. One can hope for a similar approach to regulating asymptotically-free gauge
theories in d = 3, for which the continuum limit is also at weak coupling. Extending the analysis
to include charged matter fields and non-Abelian gauge symmetries is complicated by the fact that
not all gauge-invariant states in the theory can be written in the form eq. (2.2); much previous work
on related issues for non-Abelian gauge theories exists [9, 10, 11, 12] and could serve as a basis for
quantum computations. Understanding such theories better, and developing the tools to efficiently
represent these theories on a quantum computer and extrapolate to the continuum theory, remain
as fascinating theoretical challenges to be tackled before one can contemplate solving outstanding
computational problems in QCD.
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