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Quantum field theory on a causal set
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Causal set theory, originally introduced by Rafael Sorkin, is a model of spacetime as a partially
ordered set: an element of a set corresponds to a point in spacetime, while partial ordering cor-
responds to lightcone causal relation. There is no coordinate system: all of the geometry is to be
deduced from partial ordering alone. Consequently, one has to rewrite Lagrangians in quantum
field theory in such a way that would avoid derivative signs or anything else with Lorentz index.
In my talk I will discuss some of the ways of doing so (both the ones introduced by myself and
by others).
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Quantum field theory on a causal set Roman Sverdlov

1. Introduction

A causal set is a model of discrete spacetime as partially ordered set: a ≺ b if and only if
one can go from a to b without going faster than the speed of light. It has a topology given by
Alexandrov sets,

α(p,q) = {r|p≺ r ≺ q} (1.1)

and we say p ≺∗ q if α(p,q) is empty (in other words, ≺∗ represents a direct neighbor relation).
Geometrically, Alexandrov sets are diamonds (see pic 1 on p.1 of [8]) and discreteness is postulated
through the assertion that they have finitely many elements (see pic 2 on p.1 of [8]). A distance
function is defined by

τ(a,b) = ξ max{n|∃c1, · · · ,cn−1(a≺ c1 ≺ ·· · ≺ cn−1 ≺ b)} (1.2)

where ξ is a Planck length, and we are taking maximum instead of the minimum in order to reflect
the fact that, in Lorentzian case, a timelike geodesic is the longest curve rather than shortest curve
(see pic 3 on p.1 of [8]). The goal of causal set theory is to re-express key concepts that are used
in physics (fields, Lagrangians, etc) in terms of the above entities in coordinate-independent way,
so that they continue to be well defined when manifold structure breaks down. In this talk I will
compare my own approaches to causal sets (Sec 4, Sec 5 and Sec 6) to the ones of other people
(Sec 1, 2 and Sec 3).

2. Conventional version of causal set Lagrangian

Before I talk about my own work (which takes totally different approach) let me first summa-
rize the approach used by others. The most conventional approach to scalar fields on causal sets,
developed by Sorkin, Dawker and others, is based on D’Ambertians (for most recent review, see
[1]) By using integration by parts, they choose to use−φ∆φ instead of +∂ µφ∂µφ ; then they model
∆φ in terms of the sums. In 2 dimensional situation, the sum takes the form

(∆φ)(p) = ∑
{(r,s)|α(r,p)={s}}

(φ(p)+φ(r)−2φ(s)) (2.1)

while in more general dimension it takes the form of

∆φ = ∑
rn(d)≺∗rn(d)−1≺∗···≺∗r1≺∗p

(c0(d)φ(p)+ c1(d)φ(r1)+ · · ·+ cn(d)(d)φ(rn(d))) (2.2)

where n(d) is some integer associated with d and c0(d)+ · · ·+ cn(d)(d) = 0. Even in d = 2 case
of Eq 2.1 (let alone Eq 2.2) we get infinitely many terms due to the fact that most of the “direct
neighbors” of any given point are arbitrary close to its light cone, and arbitrary far coordinate-wise
(see p.3 of [8]). However, if we assume spacetime is finite and, at the same time add Lagrangian
densities at different nearby points, then the contributions to the Lagrangian coming from coordi-
nate neighborhood would add up, while the contributions that are coordinate-wise far away would
cancel each other out (see p.3 of [8]), which would result in better and better approximation of
the continuum Lagrangian. Be it as it may, the fact that we would have ∞−∞ in case of infinite
spacetime makes me uncomfortable, and my own work is focused on alternative models that avoid
this feature.
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3. Steven Johnston’s propagator

Stephen Johnston proposed a different approach (see [2]), where instead of focusing on La-
grangian density he goes straight to the propagator. Even though he is doing quantum field theory
as opposed to quantum mechanics, he is performing path integral over trajectories of point particles
as opposed to the trajectories of the field. The particle undergoes a series of “hops" and “stops"
(see pic 1 on p.4 of [8]) each of which is assigned complex valued probability. In case of two-
point function, D(a,b), the nonlocality is avoided naturally, since the only spacetime region that is
relevent is α(a,b), whose volume is finite. He haven’t discussed how to treat the φ 4 case, but I can
think of some simple additions to his theory that would take care of φ 4. For example, in case of φ 4

-coupling between the propagators D(a,e), D(b,e), D(c,e) and D(d,e), I propose to impose upper
bound on the distance between them (see pic 2 on p.4 of [8]). One option is to assume that they
are causally related – which, without loss of generality, can be a≺ b≺ c≺ d ≺ e and then impose
upper bound τ(a,e)< Λ, for some large Λ. Other kinds of 4- verteces can be treated similarly.

4. Electromagnetic Lagrangian

Let us now turn to my own work. I define electromagnetic field on a causal set to be a two-point
function

a(r,s) =
∫

γ(r,s)
Aµdxµ (4.1)

where γ(r,s) is a geodesic connecting r and s. We assume that Aµ is approximately linear over the
Alexandrov set α(p,q) and, based on this assumption, we would like to find an approximation to
the Lagrangian density in the interior of that set. We then define Lagrangian generators as

K1 =
∫

α(p,q)
ddrdds

(
a(p,r)+a(r,q)+a(q,s)+a(s, p)

)2
(4.2)

K2 =
∫

α(p,q)
ddrdds

(
a(p,r)+a(r,s)+a(s,q)+a(q, p)

)2

(4.3)

which correspond to the contours drawn on p.11 of [8]. If we select a reference frame in which
t-axis coincides with the line passing from p to q, one can show that

K1 = k(d)τ2d+2(p,q)|~E|2 (4.4)

K2 = τ
2d+2(p,q)(Ad |~E|2 +Bd |~B|2) (4.5)

and, therefore, one can find ηscal(d) and C(d) such that

L = |~E|2−|~B|2 = ηscal(d)(K1(φ ; p,q,r)−Cscal(d)K2(φ ; p,q)) (4.6)

In [4] the value of C(d) was computed, which turns out to be very complicated.
There is an alternative approach, presented in [5], that is meant to remove the explicit d -

dependence, and it leads to a much simpler formula. Lets assume that we don’t know what d is.
In this case we can find C(d) (and, if we like, invert the formulas in [4] to find d ) by the use of
“test functions". Suppose we have a test function b that is assumed to be linear, and suppose we
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have two Alexandrov sets, α(p1,q1) and α(p2,q2), such that τ(p1,q1) = τ(p2,q2) with common
midpoint (see the middle of the drawing on p.9 on [8]). Since those Alexandrov sets are simply
Lorentz boosts of one another, we would expect the Lagrangian density estimates corresponding to
those sets to be the same. In other words, we would expect the equation

K1(b; p1,q1)−C(d)K2(b; p1,q1)≈K1(b; p2,q2)−C(d)K2(b; p2,q2) (4.7)

to hold. This implies

C(d)≈ K1(b; p1,q1)−K1(b; p2,q2)

K2(b; p1,q1)−K2(b; p2,q2)
(4.8)

where, notably, the right hand side lacks explicit d -dependence, which means that C(d) gets re-
placed with C(b). Since we would like Lagrangian to be quadratic function, we make a distinction
between test function b, which is to be fixed, and gauge field a, which is to vary. The Lagrangian
density of a over an Alexandrov set α(p0,q0) (depicted at the top of the drawing on p.9 on [8]) is
given by

L = η

(
K1(a; p0,q0,r)−C(b)K2(a; p0,q0)

)
(4.9)

where C(b) is given by the right hand side of Eq 4.8. Now, if we use just one test function, it
would imply a preferred frame (for example, a direction of vector potential associated with that test
function, if it happens to be timelike, among various other things one can derive). So we replace it
with a weighted average taken over several test functions:

L = ∑
b

N(b)
(
K1(a; p0,q0,r)−C(b)K2(a; p0,q0)

)
(4.10)

If we define M(b) to be

M(b) =
N(b)

K2(b; p1,q1)−K2(b; p2,q2)
(4.11)

and substitute Eq 4.8, we obtain

L (a; p0,q0) = ∑
b

(
M(b)

(
K1(a; p0,q0)

(
K2(b; p1,q1)

−K2(b; p2,q2)
)
−K2(a; p0,q0)

(
K1(b; p1,q1)−K1(b; p2,q2)

))) (4.12)

Now, in order for the sum over b to be finite rather than infinite, we say that b is being produced
by imaginary “source" (p3,q3) (depicted at the bottom of the drawing on p.9 of [8]) and then we
replace M(b) with M(p0,q0, p1,q1, p2,q2, p3,q3); thus,

L (φ ; p0,q0) = ∑
p3q3

(
M(p0,q0, p1,q1, p2,q2, p3,q3)×

×
(
K1(φ ; p0,q0)

(
K2(bp3q3 ; p1,q1)−K2(bp3q3 ; p2,q2)

)
−K2(φ ; p0,q0)

(
K1(bp3q3 ; p1,q1)−K1(bp3q3 ; p2,q2)

))) (4.13)

where bp3q3 is the test function sourced at (p3,q3). The above will have finitely many terms since
we can simply put an upper bound on the distances from p3 and q3 to other points. The choice
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of that upper bound, as well as the specific correspondence between the source (p3,q3) and the
resulting bp3q3 is not very important, as long as those things are well defined, smooth, and the
unwanted effects of curvature among other things are avoided. The most convenient way of defining
bp3q3(p,q) is to come up with some arbitrary function of distances from points p and q to points p3

and q3; an example of such function is presented in [4].

5. Locality and Lorentz invariance issues

After reading the last section one can ask the following question: why did we need to adjust
coefficients and why didn’t Lorentz covariance arize naturally out of the fact that partial ordering
is manifestly invariant? The answer to this question is that the choice of Alexandrov set broke the
invariance. On the other hand, in Section 2 the Alexandrov set wasn’t used and, therefore, Lorentz
invariance was preserved. However, in that situation a different problem arizes: if the universe is
infinite, the cancellation we hope to get from Eq 2.1 and Eq 2.2 is ∞−∞ which isn’t mathematically
well defined. If, on the other hand, the universe is finite, then its shape would select preferred frame.
Thus, no matter what we do, we end up with finite region that allows us to avoid infinity at the price
of emergence of preferred frame; in case of Sec 2, that region is the whole universe that is declared
to be finite, in case of Sec 4 it is Alexandrov set. But the end result of violating invariance is the
same. In [3] it is also argued that similar issue arises as a result of presence of discretization itself.
If neighboring of a point is local – as it is in Eucledian case – then the direction to nearest neighbor
will lead to preferred frame (see pic 2 on p.5 of [8]). If the neighborhood is nonlocal, as is the
case in Minkowskian space, then we get infinitely many neighbors along the vicinity of the light
cone, none of them will be nearest (see p.3 of [8]). Thus, once again, there is a trade-off between
avoiding nonlocality and avoiding preferred frame: we can avoid one or the other, but not both.

In this paper I propose to avoid this trade-off by thinking in terms of tangent bundle instead of
a manifold. Thus, a generic field F is not F (x) but rather F (x,v), and the Lagrangian density is
not L (F ,x) but rather L (F ,x,v), where x is a point on a manifold, and v is a timelike tangent
vector at x. In case of F (x,v) we do that by attaching F to an edge rather than a point, and
thinking of v as a direction of that edge; in case of L (F ,x,v) we think of v as a direction of the
line connecting the endpoints of Alexandrov set (assuming the spacetime is locally flat). In case of
gauge field, we have to attach it to edges anyway. In case of scalar field, however, it would have
been more natural to attach it to a point and have φ(r). But, for the purposes of the above, we
attach it to the edge by defining

φ(r,s) =
1

τ(r,s)

∫
γ(r,s)

φ(x)|dx| (5.1)

where γ(r,s) is a geodesic connecting r and s. As far as discussion in [3], we can argue that the
“preferred direction” in (x,v)-case that would arize as a cost of locality corresponds to acceleration.
Preferred acceleration can be explained away through gravity, which can’t be said about preferred
velocity.

There is another alternative: instead of using φ(r,s) we can use φ(r) but interpret r as (x,v)
rather than x. This can be accomplished in several ways. One way is to first do Poisson scattering
over a manifold and then, at each of the produced points, do the Poisson scattering on corresponding
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tangent plane, and the other way is to simply do Poisson scattering over the tangent bundle instead
of the manifold and then a single Poisson scattering can suffice (these two ways are, respectively,
portrayed on left side and right side of drawing on (see the left side of drawing on p.13 of [8]).
This also involves introducing new type of causal relation: (x,u)≺ (y,v) if one can start at x, with
velocity u, and reach y, with velocity v, without Lorentzian acceleration exceeding amax along the
way. This causal relation is depicted in the drawing on top right corner of p.12 on [8], where red
points are the ones causally related to the origin and green points are the ones causally unrelated.
This causal relation is contrasted with more common, x -only one, depicted at the top left corner.

6. Building wavelets

Let us now describe an alternative way of introducing scalar field. In previous section we were
assuming that φ(x,v) ≈ φ(x), unless v is close to the speed of light. Let us switch to a different
assumption; namely, φ(x,v) ≈ φ̃(µv) where φ̃ is a Fourier transform of φ , and µ is some scalar.
In order to accomplish this, we would ideally want the derivative of φ to be zero in x -directions
orthogonal to v. But, in light of spacetime curvature, this can’t be consistently implemented. So,
instead, we postulate a constraint

∆⊥φ =−ε(R)φ (6.1)

where ∆⊥ is a Laplacian with respect to an x -based hyperplane that is perpendicular to the direction
of v, R is Ricci curvature and ε is some function satisfying

ε(0) = 0 (6.2)

In light of discreteness, we define ∂‖ and ∆⊥ in an integral form (by means of heat kernels) and
then replace integrals with the sums:

∂‖φ =
∑(p′,q′)∈‖χ (p,q)(φ(p′,q′)−φ(p,q))

∑(p′′,q′′)∈‖χ (p,q) 1
(6.3)

∆⊥φ =
2α ∑(p′,q′)∈⊥δ (p,q)(φ(p′,q′)−φ(p,q))e−αd2((p,q),(p′,q′))/2

∑(p′′,q′′)∈⊥δ (p,q) e−αd2((p,q),(p′′,q′′))/2
(6.4)

where ‖χ (p,q) is a set of edges that can be produced by displacing the edge (p,q) by a distance
χ in a direction parallel to itself (and that set can, potentially, have more than one element due to
discreteness) while ⊥δ (p,q) is a set of edges that can be produced by displacement of an edge
(p,q) by a distance δ in a direction perpendicular to itself.

This, however, leads to the question: how do we define parallel transport? Indeed, one can see
that if the edges are drawn between the direct neighbors, we wouldn’t statistically expect to find
any parallel ones. In order to fix the situation we replace “short edges" with “long edges", where
by “long" we mean much longer than the scale of the laboratory (see drawing on p.15 on [8] and
also the top right of p.16 of [8]). This does not compromise the locality in x because we assume
that φ is “concentrated" at the “future-most end" of each edge. In other words, if γ is a geodesic
connecting p and q then the pair (p,q) is identified with a pair (q,v) where v is a tangent vector to
γ at q:

φ(p,q) = φ(q,v) where p = γ(0),q = γ(1),v = γ
′(1) (6.5)
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Despite the fact that the distance between p and q is larger than the size of the laboratory, the
right hand side is local since p doesn’t occur on the right hand side, and v is a tangent vector at q.
Finally, the notion of “size of the laboratory" should be replaced with something more physical.
From the above discussion, one can see that “laboratory" is a region where we insist that plane wave
is preserved up to some approximation. In other words, the effects of gravitational field as well as
φ 4 -coupling aren’t felt on that scale. That would be true if the size of the laboratory satisfies

LLab�min
(

1
R
,

m2

λφ 2
min

)
(6.6)

where λ is a φ 4 -coupling constant and φmin is the smallest detectable value of φ . We then guarantee
τ1� LLab by postulating a “stronger" condition,

τ1�min
(

1
R
,

m2

λφ 2
min

)
(6.7)

7. Conclusion

In this paper we have outlined the work done by others (Sec 1, 2 and Sec 3) as well as the
work done by the author of this paper (Sec 4, Sec 5 and Sec 6) The key difference between my own
work and the work done by others is that, in my own work, I have attempted to shift emphasis from
the manifold itself to the tangent bundle in order to address locality, whereas other people’s work
was done within manifold context. However I believe that the work by Johnston (sec 3) can also
be made local (without resorting to tangent bundle) by means of a modification that I proposed in
that section.
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