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1. Introduction

Isotropic lattices that occur in every dimension are the hypercubic, the Ad , its dual, the A∗d ,
and the Dn and its dual, the D∗n (which is equivalent to Dn in 4 dimensions). (See, e.g., ref. [1].)
Studies of pure gauge models on A4 [2] and D4 lattices [3] were done a long time ago, claiming
advantages over hypercubic in efficiency and in the size of the scaling region, stemming from better
rotational symmetry. Nevertheless, alternative lattices never gained any traction in the lattice gauge
community. The situation is even worse for fermions. While Wilson fermions are easily formulated
on any lattice, it seems no calculations have ever been done except on hypercubic. There was some
work on the 2-dimensional triangular lattice by Chodos and Healy [4] and by Goeckeler [5]. The
construction of Chodos and Healy is related to the fact that fermions occur naturally on a hexagonal
grid [6], which is a triangular lattice with a 2-point basis, corresponding to the 2 components of a
Dirac fermion in 2 dimensions. Goeckeler pursued a rather complicated transcription of the Dirac-
Kaehler formalism wherein degrees of freedom live on sites, links and cells. The purpose of this
report is to show that staggered fermions can be formulated on Ad and A∗d lattices as easily as on
hypercubic. The construction is interesting and sheds light on lattice fermions and may also prove
useful in calculations.

It was noticed a long time ago [7] that the obvious choice for the kinetic part of a naive action
on a non-hypercubic lattice of the form

∑
n,i

ψ̄n ei · γ(ψn+ei−ψn−ei)

where ei is the vector from n to its i’th nearest neighbor, generates non-rotationally invariant dou-
blers. Of course, a Wilson term can be added to rid of them, but an action of this form fails if
one wants to get from naive to staggered fermions. Rotational invariance of a fermion action only
guarantees that the mode near zero momentum obeys the Dirac equation. A symmetry connecting
doublers is also needed to get full rotational invariance and a route to staggered fermions.

2. The A4 Lattice

A site on an Ad lattice, also known as a "simplicial" lattice in the physics literature, is defined
by d+1 integers ni such that Σni = 0. In other words, the Ad lattice lies in the hyperplane, Σni = 0,
of a (d +1)-dimensional hypercubic lattice. Each lattice site has d(d +1) nearest neighbors. The
dual lattice A∗d has 2(d+1) nearest neighbors. In 3 dimensions, A3 and A∗3 are the face-centered and
body-centered cubic lattices, respectively. In 2 dimensions they are both equivalent to the triangular
lattice. In this paper, for definiteness, I will set d = 4. The Bravais group of the A4 and A∗4 lattices
has 240 elements, smaller than the 384 elements of the 4-dimensional hypercubic lattice, despite
having more nearest neighbors.

On the A4 lattice, it is easier and more transparent to work with 5-dimensional vectors, whose
components sum to zero. The unit vectors from a site to its nearest neighbors are

εεε12 =
1√
2
(1,−1,0,0,0), εεε13 =

1√
2
(1,0,−1,0,0), . . . ,εεε45 =

1√
2
(0,0,0,1,−1) (2.1)
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along with their negatives. There are 20 nearest neighbors and thus 10 links per site. The 4 primitive
lattice vectors, τττµ , can be chosen to be εεεµ5. Sites of the lattice are located at ∑nµτττµ where nµ are
integers. The reciprocal lattice vectors, bµ , defined by bµ · τττν = 2πδµν , are

b1 = κ(4,−1,−1,−1,−1), . . . ,b4 = κ(−1,−1,−1,4,−1) (2.2)

with κ =
√

8π/5. They generate the lattice A∗4.
We also need a set of orthonormal vectors on the 4 dimensional hypersurface. For example:

e1 =
1√
2
(1,−1,0,0,0), e2 =

1√
6
(1,1,−2,0,0), e3 =

1√
12
(1,1,1,−3,0), e4 =

1√
20
(1,1,1,1,−4).

3. Fermions on the A4 Lattice

The proposed action on an A4 lattice of a Dirac fermion coupled to a gauge field is (with lattice
spacing a set to 1)

S =

√
5

4 ∑
n

[ i√
10 ∑

j>i
ψ̄n γiγ j (Un,i jψn+εεε i j −U†

n−εεε i j,i jψn−εεε i j)+mψ̄nψn
]
. (3.1)

The range of i and j is 1 to 5, γi are the Euclidean Dirac matrices (all squaring to one), and
Ui j = exp[iAi j(n)] is an element of the gauge group. The factors are chosen so that the naive
continuum limit of S is

∫
d4x(ψ̄Γµ∂µψ +mψ̄ψ). They take into account the volume of

√
5/4 per

site and a normalization factor so that the effective Dirac matrices, Γµ , square to one (to be seen
below). This construction works in any dimension d because the number of links/site is the same
as the number of matrices γiγ j for indices from 1 to d +1, namely d(d +1)/2.

3.1 Propagator, Symmetries, and Modes

The free propagator for m = 0 is

S(k) = 2
√

2∑
j>i

γiγ j sin(k · εεε i j)/∑
j>i

sin2(k · εεε i j)

which has poles at k = bµ/2 and sums of 2, 3 and all 4 of these, 16 in total as on a hypercubic
lattice.

These modes are connected by symmetries of the action

ψn→ T (n)ψn, ψ̄n→ ψ̄nT (n)

where T (n) = (−1)nµ γµ and all possible products of these. Thus the propagator and its inverse are
the same around each mode. So to see the Dirac structure of each mode it is sufficient to focus only
on the one near k = 0 for which the inverse propagator is

D(k) ∝ i
4

∑
µ=1

∑
j>i

γiγ jε
µ

i j kµ ≡ c
4

∑
µ=1

Γµkµ

where ε
µ

i j = εεε i j · eµ = (ei
µ − e j

µ)/
√

2. Setting c =
√

5/2

Γµ = i
√

2
5 ∑

j>i
γiγ jε

µ

i j = i
5

∑
i=1

ei
µγi A (3.2)
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where

A =
1√
5

5

∑
i=1

γ
i.

The Γµ comprise a set of Euclidean Dirac matrices: {Γµ ,Γν} = 2δµν . Thus the action describes
16 Dirac fermions. We also have Γ5 = A.

Equation (3.2) can be inverted to express γi and γiγ j in terms of Γ:

γi =−i∑
µ

ei
µΓµΓ5 +

1√
5

Γ5 (3.3)

γiγ j =−i
√

2
5 ε

µ

i j Γµ + ∑
ν>µ

(ei
µe j

ν − e j
µei

ν)ΓµΓν . (3.4)

The symmetry group of the A4 lattice consists of all permutations of the 5 coordinates, known
as the "symmetric" group, S5, as well as a negation of all the coordinates. So the group is S5×(±1)
which has 5!×2 = 240 elements. The subgroup of even permutations, known as the "alternating"
group, A5, are proper rotations. Odd permutations involve reflections. The negation of all the
coordinates are rotations by 180o in even dimensions while it is an inversion in odd ones. Elements
of S5 can be generated by single exchanges. An example is the exchange of the first and second
elements of a coordinate vector, denoted as (21345). The action is invariant provided

ψn→ τψn′ , ψ̄n→ ψ̄n′τ, U12→U†
12, U1 j↔U2 j (3.5)

for j > 2 and τ = 1√
2
(γ1− γ2).

The εεε i j, the γiγ j, and the gauge fields, Ai j, transform as 10-dimensional representations of S5,
comprised of 4 and 6-dimensional irreducible representations. This reduction is apparent in (3.4)
expressing γiγ j in terms of the 4-dimensional Γµ and the 6-dimensional ΓµΓν . Similarly, we can
express Ai j in terms of a 4-vector Bµ and an antisymmetric tensor Yµν as

Ai j = ε
µ

i j Bµ + ∑
ν>µ

(ei
µe j

ν − e j
µei

ν)Yµν (3.6)

Combining (3.1), (3.4), and (3.6) the naive continuum limit of the action is seen to be∫
d4x ψ̄{Γµ(∂µ − igBµ)+gσµνYµν}ψ +mψ̄ψ

Since Yµν is short range [2], it can to a good approximation be integrated out, leading essentially
to a four-fermion interaction with coupling of order a2g2.

3.2 Absence of Additive Mass Renormalization

Although the A4 action has no exact chiral symmetry it has no additive mass renormalization.
Under an inversion, that is (12345)→−(12345), εεε i j and Ai j switch sign. There is no matrix which
anicommutes with all ten γiγ j and thus the action, (3.1), is not invariant. The transformation

ψn→ ψn′ ; ψ̄n→−ψ̄n′

3
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leaves the kinetic term invariant but switches the sign of the mass term. It follows that when m = 0
the full propagator in momentum space satisfies S(−p)→−S(p) which of course is also satisfied
by the inverse propagator. Thus, when m = 0, no mass term can be generated.

In order to have exact invariance of the action under the full symmetry group of the lattice (i.e.,
also under inversion) it seems we must double the fermions: ψ → (ψ1, ψ2). Then a Pauli matrix
σ3 can be inserted into the kinetic (or the mass term) and the action is invariant under n→ −n
provided

ψn→ σiψn′ , ψ̄n→ ψ̄n′σi

with i = 1 or 2.

3.3 Reduction to Staggered Fermions

The reduction to staggered fermions proceeds as on cubic lattices. The action is diagonalized
by

ψn→ γ
n1
1 γ

n2
2 γ

n3
3 γ

n4
4 γ

(n1+n2+n3+n4)
5 ψn

leading to the staggered fermion action

Sst =

√
5

4 ∑
n

[ 1√
10 ∑

j>i
χ̄n ηi(n)η j(n)(χn+εεε i j −χn−εεε i j)+mχ̄nχn

]
(3.7)

where χn is a single anticommuting variable and the phases are

η1 = 1, η2 = (−1)n1 , η3 = (−1)n1+n2 , η4 = (−1)n1+n2+n3 , η5 = (−1)n1+n2+n3+n4 .

Note that the first 4 of these have the same form as on a hypercubic lattice. As on a hypercubic
lattice we can form a lattice with 16 basis points containing the degrees of freedom of 4 Dirac
fermions. These cells of 16 points have the same connectivity as the A4 lattice. That is, the χ̄n in a
cell couple to the χn in 20 neighboring cells.

Like the naive action, the staggered action has no chiral symmetry yet it has no additive mass
renormalization.

4. The A∗4 Lattice

As for the A4 lattice it is convenient to work with 5-dimensional vectors whose components
sum to zero. Nearest neighbor vectors, normalized to unity, are

fff 1 = (4,−1,−1,−1,−1)
√

20, . . . , fff 5 = (−1,−1,−1,−1,−4)
√

20

along with their negatives, 10 in all. The first 4 of these, denoted by fff µ can be chosen as primitive
lattice vectors, (differing only by a factor from the reciprocal lattice vectors above for the A4 lattice).
Sites of the lattice are located at ∑nµ fff µ where nµ are integers. The reciprocal lattice vectors are
b1 = κ(1,0,0,0,−1), . . . ,b4 = κ(0,0,0,1,−1), with κ = 4π/

√
5. They, of course, generate the A4

lattice.
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5. Fermions on the A∗4 Lattice

The action on an A∗4 lattice of a Dirac fermion coupled to a gauge field is (with lattice spacing
a≡ 1 )

S =
5
√

5
16 ∑

n

[ 1√
5

5

∑
j=1

ψ̄n γ j (Un, jψn+ fff j
−U†

n− fff j, j
ψn− fff j

)+mψ̄nψn
]
. (5.1)

The factors are chosen so that the naive continuum limit of S is
∫

d4x(ψ̄Γµ∂µψ +mψ̄ψ).

5.1 Propagator, Symmetries, and Modes

The free propagator in momentum space with m = 0 is

S(k) ∝ ∑
j

γ j sin(k · fff j)/∑
j

sin2(k · fff j)

which has the usual 16 poles within the Brillouin zone at k = bµ/2 and sums of 2, 3 and all 4 of
these. The symmetries connecting these modes are

ψn→ T (n)ψn, ψ̄n→ ψ̄nT (n)

where T (n) = (−1)nµ iγµγ5 and products of these. Near each pole, the fermions obey the (Eu-
clidean) Dirac equation with Dirac matrices given by

Γµ =
5

∑
i=1

ei
µγi (5.2)

where the eµ are an orthonormal basis. As for the A4 lattice, Γ5 =
1√
5 ∑

5
i=1 γi.

The nearest neighbor vectors fff j and the gauge field A j transform as 5-dimensional represen-
tations of S5, reducing to 4⊕1. So do the γ j as seen from the inversion of (5.2):

γ j = ∑
µ

e j
µΓµ +

1√
5

Γ5 .

The symmetry group of the A∗4 lattice is the same as for A4, namely the 240 element group
S5× (±1). As on A4, the fermion action on A∗4 is invariant under only a 120 element subgroup,
however it is not the same subgroup. The A∗4 action is invariant under negated odd elements,
e.g., -(21345). For both lattices, the action is invariant under the subgroup, A5, comprising purely
rotational elements. Also on the A∗4 lattice, as on the A4 lattice, the kinetic and mass terms are
not both invariant under an inversion, implying the absence of additive mass renormalization even
without a chiral symmetry.

5.2 Reduction to Staggered Fermions

The naive action (5.1) is diagonalized by

ψn→ γ
n1
1 γ

n2
2 γ

n3
3 γ

n4
4 ψn
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leading to the staggered fermion action

Sst =
5
√

5
16 ∑

n

[ 1√
5

5

∑
i=1

χ̄n ηi(n)(χn+ fff i
−χn− fff i

)+mχ̄nχn
]

(5.3)

where χn is a single anticommuting variable and the phases are

η1 = 1, η2 = (−1)n1 , η3 = (−1)n1+n2 , η4 = (−1)n1+n2+n3 , η5 = (−1)n1+n3 .

The first four of these are the same as the those for the A4 and hypercubic lattices, while η5 is the
product of these, just as γ5 is the product of the 4 Dirac matrices.

6. Other Notable Features and Final Remarks

There is an interesting duality between vector and axial-vector interactions, paralleling the
duality between the A4 and A∗4 lattices. On an A4 lattice, an axial-vector interaction, identical for
all the doublers, is

∑
n

5

∑
i=1

(ψ̄n γi ψn+bi + ψ̄n+bi γi ψn) Zi(n)

where b1 =
1√
2
(4,−1,−1,−1,−1), . . . ,b5 =

1√
2
(−1,−1,−1,−1,4). The first 4 of these generate

an A∗4 sublattice. In the naive continuum limit, this interaction, using (3.3), is actually an axial-
vector plus a pseudoscalar interaction. Similarly, on an A∗4 lattice, an axial-vector interaction lives
on an A4 sublattice, along with an antisymmetric tensor interaction.

While naive fermions on A4, A∗4 and hypercubic lattices all give rise to 16 fermions, a Wilson
term reduces the degeneracy of the masses differently on each lattice. Recall that on a hypercubic,
the degeneracies for each mass are 1, 4, 6, 4, and 1 from lightest to heaviest. On an A4 lattice the
corresponding pattern is 1, 5, 10 while on A∗4 it is 1, 10, 5.

One promising use for fermions on the A4 lattice might be in calculations involving complex
actions where simulations are difficult. With 10 links/site, compared to just 4 for hypercubic, a
mean-field, 1/d expansion on A4 should, already at low orders, give much better results.

The higher number of links/site and better rotational invariance might also be advantageous in
simulations as claimed for pure gauge models [2, 3].

The D4 lattice (also known as F4) has more rotational symmetry than any other 4-dimensional
lattice, with rotational invariance broken only at O(a4). Is there a simple way to formulate staggered
fermions on D4? I have not yet found one.
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