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In general, perturbative expansions of observables in powers of the coupling constant in quantum
field theories are asymptotic series. In many cases it is possible to apply resummation techniques
to assign a unique finite value to an asymptotic series, but a particular pattern of divergence, the
so-called renormalon, gives rise to non-perturbative ambiguities. The framework of Numerical
Stochastic Perturbation Theory (NSPT), based on stochastic quantisation and the perturbative
expansion of lattice fields, makes it possible to compute coefficients of perturbative series on the
lattice. In this work we report on an NSPT study of asymptotically free sigma models, namely the
Principal Chiral Model and the CP(N−1) model. We present results for a lattice computation of
the expansion coefficients of the energy density and discuss signatures of renormalons.
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1. Introduction

A heuristic argument suggest that perturbative expansions in powers of the coupling constant α

in quantum field theories (QFTs) are generally asymptotic series [1]. To compare theoretical ex-
pectations with experimental results it is necessary to assign a unique value to these asymptotic
series. In many cases it is possible to apply resummation techniques, like Borel summation, to
unambiguously define the value of an asymptotic series. Factorially divergent series with non-
sign-alternating coefficients, however, give rise to non-perturbative ambiguities (∼ exp(− 1

α
)) in

the Borel summation. For the purpose of this work, we will refer to this divergence pattern as
renormalon, see [2] for an in-depth review of the topic.

The non-perturbative ambiguities introduced by renormalons raise fundamental questions about
the relation between perturbative expansions and a non-perturbative definition of QFTs, which are
adressed for example in resurgence theory (see [3] for a recent introductory review). Moreover,
they can also play a crucial role for calculations in the operator product expansion (OPE) [2]. A
better understanding of renormalon physics is therefore of interest for a broad range of applications.

To clearly identify the divergence pattern giving rise to renormalons, one generally has to
calculate the perturbative expansion up to very high powers of α . The number of diagrams that
have to be taken into account to calculate the coefficient at order αM in diagrammatic perturbation
theory (DPT) is typically proportional to M!. For most QFTs of interest it is in practice not feasible
to go to large M. For this reason, analytic verification of results obtained based on physical intuition
or heuristic arguments involving renormalons is often hard to achieve. An independent cross check
of renormalon based conjectures using lattice methods is therefore of great interest.

In this work we use the framework or Numerical Stochastic Perturbation Theory (NSPT) [4, 5]
to study renormalons in sigma models in d = 1+ 1 dimensions. These models are not trivial and
have interesting features, like a non-perturbative mass gap, confinement, or asymptotic freedom, in
common with QCD in d = 3+1. The big advantage of NSPT over DPT is that the numerical cost
of computing an expansion up to order M is proportional to M2 and not to M!, which enables us
to calculate perturbative expansions up to higher orders M (state of the art computations in SU(3)
gauge theory in d = 3+1 [6–8] reach up to M = 35).

2. Numerical Setup

We consider two different sigma models in d = 1+1 dimensions, the Principal Chiral Model
(PCM(N)) and the CP(N−1) model. Both models have been investigated in the context of resur-
gence theory (see, e.g., [9–12]) and are expected to feature renormalons. The lattice action of the
PCM(N) is given by

S =−2βN ∑
x,ν

ReTr
(
U(x)U(x+ν)†) , U ∈ CN×N , (2.1)

where the fields U sit on the sites of the lattice and are subject to the constraint UU† = 1 and
detU = 1, i.e. U ∈ SU(N). For the CP(N−1) model we use the lattice action

S =−2βN ∑
x,ν

Re
(
n†(x)Uν(x)n(x+ν)

)
, n ∈ CN , (2.2)
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where the Uν ∈ U(1) are gauge links and the constraint on the fields is n†n = 1. The gauge field is
auxiliary, since there is no kinetic term for Uν in Equation (2.2).

The ansatz of NSPT is to expand the lattice fields in powers of α = β−
1
2 and truncate the series

at a predefined power M, so that, e.g., the fields of the PCM(N) would be given by

U(x) =
M

∑
k=0

Uk(x)β−
k
2 . (2.3)

It is straightforward to define sums and products of truncated series:

U(x)+U ′(x) =
M

∑
k=0

(Uk(x)+U ′k(x))β
− k

2 , U(x) ·U ′(x) =
M

∑
k=0

(
k

∑
l=0

Ul(x)U ′l−k(x)

)
β
− k

2 . (2.4)

Analytic functions of the field variables can be defined by simply inserting the expansion in the
Taylor series of the function and neglecting terms of order O(β−

M+1
2 ). The numerical cost of com-

puting the product in Equation (2.4) scales like M2 and since this is the most expensive operation
we expect the cost of NSPT to be also proportional to M2.1

Monte Carlo algorithms with an accept/reject step can not be expanded in powers of β−
1
2 and

are not compatible with expansions of the form (2.3). NSPT therefore employs the discretised
Langevin equation to generate lattice configurations [13]. Discretising the Langevin time intro-
duces a systematic error and makes it necessary to simulate at many different discrete Langevin
time steps ε and to perform an extrapolation ε→ 0. The size of the systematic error depends on the
integration routine used in the discretised Langevin update. We use the second order Runge-Kutta
type integrator from [7], for which the systematic error is of order O(ε2).

For this first exploratory study we consider the perturbative expansion of the energy density,
which is given by

ECPN = 2N〈Re
(
n†(x)Uν(x)n(x+ν)

)
〉, EPCM = 1− 1

N
〈ReTr

(
U(x)U(x+ν)†)〉 (2.5)

for the CP(N−1) model and PCM(N), respectively. The perturbative series for the energy density
is formally given by

E = ∑
n

Enβ
− n

2 , (2.6)

but the coefficients with odd n vanish identically. (To see why remember that the free energy, up to
shifts and rescaling, is given by partial derivative of the partition function with respect to β .) One
reason for studying the energy density is that analytic results for the lowest expansion coefficients
in (2.6) are available in the literature for both models considered in this work.

3. Results

We start this section with a discussion of the results for medium sized lattices with V = 16×16.
To check the dependence on the discrete Langevin time step we performed NSPT calculations for
ε = 0.05, 0.025 and 0.01. For the CP(N−1) model the first three non-trivial expansion coefficients

1This estimate ignores possible bottlenecks like cache sizes or memory bandwidth.
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Figure 1: Left: Langevin trajectories for the coefficient E4 in the CP(1) model on a V = 16×16 lattice for
different values of ε . The symbols with error bars on the very right show the average over the trajectory and
the solid black line is the continuum perturbation theory result. Right: Average deviation from the constraint
n†n = 1 at order 18 as a function of the Langevin time τ . All parameters are the same as for the left plot.

are known and we find good agreement between our results and the analytical values, even for
the largest ε . A typical Langevin history for E4 in the CP(1) model is shown on the left plot in
Figure 1. While the results for the first few coefficients are very encouraging, there seems to be a
problem with higher order coefficients. We find that the constraint n†n= 1, which has to be fulfilled
order by order, is violated for higher orders at large Langevin times. The reason seems to be an
accumulation of numerical errors over the Langevin run2. As an example, we plot the deviation
from the constraint at order 18 on the right hand side of Figure 1.
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Figure 2: Left: Langevin trajectories for the coefficient E6 in PCM(3) on a V = 16×16 lattice for different
values of ε . The black line marks the continuum perturbation theory result and the symbols with error
bars on the very right show the average over the trajectory. Right: Average deviation from the constraint
U†U = 1 at order 18 as a function of the Langevin time τ . The deviation from the unit matrix is measured
as |‖U†U‖F −

√
N|/N2, where ‖‖F stands for the Frobenius norm. All parameters are the same as for the

left plot.

For the PCM(N) the coefficients are known up to E6. Again, we generally find a good agree-
ment between the analytic values and the NSPT calculations, see the left plot in Figure 2. We do

2We use a formulation of the Langevin algorithm which, for infinite precision arithmetic, exactly preserves the
constraint even for finite ε .
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not observe any large deviations from the constraint U†U = 1: as the plot on the right panel of
Figure 2 shows, the constraints are fulfilled even at large orders (up to some small errors of the
order of the machine epsilon).

Simulations on a larger lattice with V = 32×32 were only performed for the PCM(N), because
of the constraint compliance issues with the CP(N−1) model. On the larger lattice we simulate
the PCM(N) for several different values of N = 4,5,6,12 and use perturbative expansions up to
order 40 (order 20 for N = 12) in β−

1
2 . Moreover, we significantly decrease the size of the Langevin

time steps and use ε = 0.01,0.0075,0.005. The results are summarised in Figure 3 and show that
NSPT enables us to calculate perturbative expansion coefficients with high precision up to the
highest orders considered in this work.
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Figure 3: Results for the PCM(N) on a lattice of size V = 32×32 for different values of N and ε . The plots
show the (even) expansion coefficients. Where available the analytical results, denoted by a small black line,
are plotted for comparison.

If the expansion (2.6) is divergent with a renormalon pattern, the expectation is that asymp-
totically for large n the coefficients have the form En ∼ bnn!nc, with constants b,c and b > 0.
Assuming the coefficients indeed have this asymptotic behaviour, up to an optimal truncation or-
der n∗ the terms Enβ−

n
2 decrease and the inclusion of additional terms in the series gives a better

approximation to E. It can be shown that n∗ ∼ β
1
2

b and OPE arguments suggest that, to leading
order, b ∼ β0

D , where β0 is the leading coefficient in the expansion of the β -function and D is the
energy dimension of the observable in question (D = 2 for E). For the PCM(N) with action (2.1)
β0 =

1
8π

. The minimal coefficient En can be derived by the same arguments to occur at n∗ ∼ 16π ,
which is larger than our maximal expansion order M = 40. We would have to go to much higher
orders before the expansion coefficients start to increase and the renormalon pattern emerges.
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Figure 4: Expansion coefficients of the energy density E ′n in the PCM(N) for rescaled coupling Nβ =: β ′.
The Langevin time step is ε = 0.005 for all N in this plot.

Fortunately there is an alternative, less expensive way to check for renormalons. Rescaling
the coupling β ′ := βN leads to β ′0 = N

8π
and gives an N-dependent n′∗ ∼ 16π

N . There is no need
to recalculate the expansion coefficients, since the new ones are also given by a simple rescaling:
E ′n = EnN

n
2 . Figure 4 shows a plot of the rescaled coefficients E ′n. With the exception of N = 4

the expectation for the optimal truncation order (n′∗ ≈ 13,10,8,4 for N = 4,5,6,12) is in good
agreement with a change of the monotonicity behaviour of the expansion coefficients.

4. Discussion and Outlook

In this work we applied NSPT to calculate the expansion coefficients of the energy density in
the PCM(N) and the CP(N−1) model. For the CP(N−1) model we found that we can compute
the lowest expansion coefficients with high precision, but for the higher coefficients the results
are spoiled by large deviations from the constraint n†n = 1. We tried to to fix this by going to
smaller time steps ε , periodically rescaling the fields to enforce the constraint “by hand”, and even
by considering a different lattice discretisation of the CP(N−1) action3. So far, none of these
approaches has been entirely successful and the constraint violation remains an open problem.

For the PCM(N) our numerics worked very well and we were able to calculate expansion co-
efficients up to order 40. Even for the largest orders constraint violation does not pose a problem in
the PCM(N) calculations. Our results for the monotoneicity behaviour of the rescaled coefficients,
shown in Figure 4, are in general in good agreement with expectations and can be interpreted as
renormalon signatures.

Further work is necessary to unambiguously identify a renormalon in the PCM(N). The con-
stant b can be extracted from ratios of expansion coefficients and should be a more reliable indicator
of a renormalon. To this end, a careful execution of the extrapolation ε→ 0 and the limit V →∞ is
necessary [7, 8]. This is currently work in progress and the final results will be published elsewhere.

3The equations of motion can be used to get rid of the auxiliary gauge field, giving the so-called “quartic action”.
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