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Euclidean relativistic quantum mechanics W. N. Polyzou

1. Euclidean relativistic quantum theory

Relativistic treatments of quantum mechanics are needed to investigate the dynamics and struc-
ture of physical systems on scales smaller than the Compton wavelength of the constituent particles
of the system. This is particularly relevant for understanding strong-interaction dynamics and struc-
ture at sub-nucleon distance scales. While quantum field theory provides an elegant and consistent
treatment of relativity and quantum mechanics, it is difficult formulate controlled approximations
that preserve relativistic invariance in kinematic regions where the interactions are strong. Finite
degree of freedom models that provide a consistent treatment of relativity and quantum mechan-
ics can also be formulated, however models that also satisfy cluster properties normally require
generating complicated frame-dependent many-body interactions [1].

The Euclidean axioms [2] of quantum field theory have the feature that the locality axiom is
logically independent of the other axioms. This suggests an alternate path to formulate relativistic
quantum models with a finite number of degrees of freedom that retain all of the other desirable
properties of the field theory. In addition, in the Euclidean case, the Green’s functions of the field
theory are formally related to the Lagrangian of the theory by a Euclidean path integral. This can
be used to include dynamical constraints on models that are motivated by local field theory.

One of the surprising properties of the Euclidean construction is that the quantum mechanical
Hilbert space and all of the Poincaré generators can be represented in a purely Euclidean framework
without performing an explicit analytic continuation in Euclidean time. In this work I discuss this
construction along with how it can be used to perform scattering calculations that are normally not
considered natural in a Euclidean framework.

The dynamical input to the Euclidean formulation of relativistic quantum mechanics is a col-
lection of N-point Euclidean Green functions,

{GE:mk(xm, · · · ,x1;y1, · · · ,yk)} m+ k = N (1.1)

where {xi} are final Euclidean coordinates and {yi} are initial Euclidean coordinates. In a local
theory there is only one Green function for any pair m+ k = N, however if locality is not required
there can be several for each N. These Green functions must be Euclidean invariant or covariant,
symmetric or antisymmetric with respect to interchange of the initial or final Euclidean coordi-
nates among themselves, satisfy cluster properties, be tempered distributions, and satisfy reflection
positivity.

The elements of a relativistic quantum theory are (1) a Hilbert space, (2) a unitary represen-
tation of the Poincaré group satisfying (3) cluster properties and (4) a spectral condition. The
Euclidean reconstruction discussed below has all of these properties.

A dense set of elements of the Hilbert space are finite sequences of functions of Euclidean
space-time variables

ψ(x) := (ψ1(x11),ψ2(x21,x22), · · ·) (1.2)

satisfying the positive relative-time support condition

ψn(xn1,xn2, · · · ,xnn) = 0 unless 0 < x0
n1 < x0

n2 < · · ·< x0
nn. (1.3)

The symmetry properties of the Green’s functions imply that as long as the Euclidean time support
of these functions are satisfied for some ordering, the coordinates can be relabeled so (1.3) holds.
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The physical Hilbert space inner product is

〈ψ|φ〉M = (θψ,GEφ)E = ∑
nk

∫
d4nxd4kyψ

∗
n (θxn1,θxn2, · · · ,θxnn)×

GE:nk(xnn, · · · ,x1n;y1k, · · · ,ykk)φk(yk1,yk2, · · · ,ykk) (1.4)

where θ is the Euclidean time reflection operator θx := θ(τ,x) = (−τ,x).
Reflection positivity is the condition that 〈ψ|ψ〉M ≥ 0. This ensures that (1.4) has the proper-

ties of a Hilbert space inner product.
Relativistic invariance follows from the condition that the determinant of the following 2×2

matrices,

Xm :=

(
t + z x− iy
x+ iy t− z

)
Xe :=

(
iτ + z x− iy
x+ iy iτ− z

)
, (1.5)

is preserved under the linear transformation X → X ′ = AXBt for det(A) = det(B) = 1. These trans-
formations, which preserve the Euclidean and Lorentz line elements

det(XM) = t2−x2 det(XE) =−(τ2 +x2), (1.6)

define complex Lorentz and complex orthogonal transformations. It follows that the real Euclidean
transformations form a subgroup of the complex Poincaré group. This relation be exploited to
relate generators of the 4-dimensional Euclidean group to generators of the Poincaré group.

In the spinless case the relations lead to the following representation of the Poincaré generators
on the Euclidean representation of the Hilbert space (on each component of ψ):

Hψn(xn1,xn2, · · · ,xnn) =
n

∑
k=1

∂

∂x0
nk

ψn(xn1,xn2, · · · ,xnn) (1.7)

Pψn(xn1,xn2, · · · ,xnn) =−i
n

∑
k=1

∂

∂xnk
ψn(xn1,xn2, · · · ,xnn) (1.8)

Jψn(xn1,xn2, · · · ,xnn) =−i
n

∑
k=1

xnk×
∂

∂xnk
ψn(xn1,xn2, · · · ,xnn) (1.9)

Kψn(xn1,xn2, · · · ,xnn) =
n

∑
k=1

(xnk
∂

∂x0
nk
− x0

nk
∂

∂xnk
)ψn(xn1,xn2, · · · ,xnn), (1.10)

which are the generators of time translation, space translation, rotations and rotationless Lorentz
boosts respectively. These generators satisfy the Poincaré commutation relations, and are formally
Hermitian with respect to the inner product (1.4). In these expressions all of the variables and
derivatives are Euclidean. If the Green functions satisfy cluster properties then these generators
also satisfy cluster properties. In addition, if the Green functions satisfy reflection positivity, then
it follows that the Hamiltonian above satisfies a spectral condition.
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2. Scattering theory

Given a Hilbert space and a Hamiltonian satisfying cluster properties, scattering observables
can be defined and calculated using the same methods that are used in non-relativistic scattering
theory. In a quantum theory the S-matrix is the probability amplitude for scattering from an initial
state to a final state, S f i := 〈ψ+|ψ−〉. The scattering state vectors can be expressed in terms of free
state vectors |ψ0±〉 that are seen asymptotically in the detector after the collision or in the beam
and target before the collision, |ψ±〉 = Ω±|ψ0±〉. Wave operators Ω± for multichannel scattering
have the general structure

Ω±|ψ0±〉= lim
t→±∞

∑eiHt
∏

n
|φn,pn,µn〉︸ ︷︷ ︸

J

e−ient︸ ︷︷ ︸
e−iH0t

fn(pn,µn)︸ ︷︷ ︸
|ψ0±〉

dpn =: lim
t→±∞

eiHtJe−iH0t |ψ0±〉 (2.1)

where |φn,pn,µn〉 represents an elementary or bound system with total momentum pn, magnetic
quantum number µn, and energy en. fn(pn,µn) represents a localized wave packet with the mean
momentum of the particle or bound sub-system. The mapping J [1] above is called an injection
operator. It is a mapping from a Hilbert space of scattering asymptotes to the physical Hilbert
space.

Haag-Ruelle scattering is the field-theory version of the above. In the field theory case the
operator J is expressed as a suitably symmetrized product of operators that create single-particle
states out of the vacuum. While this requires solving the one-body problem, the benefit is that the
limits in (2.3) ([3][4][5]) are strong limits.

In the Euclidean case for a two-particle initial state a candidate for the injection operator J is
[6]

J : 〈x1|φ1,p1〉〈x2|φ2,p2〉= h1(∇
2
1)δ (x

0
1− τ1)h2(∇

2
2)δ (x

0
2− τ2)

1
(2π)3 eip1·x1+ip2·x2 , τ2 > τ1

(2.2)
where the Euclidean Laplacians, ∇2

i , are the mass squared operators for each particle or subsystem,
and the hi(m2) are smooth functions that are 1 when m is the mass of the ith particle (or subsystem)
and 0 on the rest of the mass spectrum. The delta function in the Euclidean times ensures the
time-support condition.

The reason that this is only a candidate is because h2(∇
2) is not analytic in ∇2, so it could

transform a wave function satisfying the relative-time support conditions to one that does not,
leading to a range that is out of Hilbert space. This will not happen if polynomials in ∇2 are
complete in this space. To establish this, note that a sufficient condition for completeness is that
the Stieltjes moments

γn :=
∫

∞

0

e−
√

m2+p2τ

2
√

m2 +p2
ρ(m)m2ndm (2.3)

where τ = τ1 + τ2 > 0 satisfy Carleman’s condition [7]
∞

∑
n=0
|γn|−

1
2n > ∞. (2.4)

This will hold as long as the Lehmann weight ρ(m) in (2.6) is polynomially bounded [6]. This
ensures that the Haag-Ruelle functions h(∇2) can be approximated by polynomials.
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A sufficient condition for the convergence of the limit (2.3) that defines the scattering wave
operators is the Cook condition [8], which in the Euclidean representation for 2-2 scattering has
the form ∫

∞

a
‖(HJ− JH0)e∓iH0t |ψ0〉‖Mdt < ∞ (2.5)

where a is a constant and

‖(HJ− JH0)Φe∓iH0t |ψ0〉‖2
M := (ψ0e±iH0t(J†H−H0J†)θGE(HJ− JH0)e∓iH0t |ψ0)E . (2.6)

The important observation is that because the injection operator asymptotically projects on one-
body states, the definitions imply that the contribution to the integral (2.9) due to the disconnected
parts of the Green function vanishes [9][6]. All that remains is the connected part, which, if the
spectrum has a mass gap, is expected to fall off like t−3 for large t. This suggest that the scattering
problem is mathematically well defined in this Euclidean representation.

3. Computational considerations

There are a number of tricks that can facilitate the computation of scattering observables in
the Euclidean case [10]. The first is to use the invariance principle [11] which implies

lim
t→±∞

eiHtJe−iH0t |ψ〉= lim
t→±∞

ei f (H)tJe−i f (H0)t |ψ〉 for f (x) =−e−βx. (3.1)

This gives
lim

t→±∞
eiHtJe−iH0t |ψ〉= lim

n→∞
e∓ine−βH

Jei±ne−βH0 |ψ〉. (3.2)

Since σ(e−βH) ∈ [0,1], this means that e∓ine−βH
can be uniformly approximated by a polynomial

in e−βH where β > 0 is a parameter that can be adjusted for convergence. The inequality

|einx−P(x)|< ε x ∈ [0,1] (3.3)

leads to the uniform operator inequality

|‖eine−βH −P(e−βH)|‖< ε (3.4)

with the same ε in (3.3) and (3.4). This is useful in the Euclidean case because e−nβH simply
translates the Euclidean time to the right by nβ .

This method can be used to calculate sharp-momentum transition matrix elements. The ap-
proximate expression has the form

〈k f |T (E + i0)|ki〉 ≈ 〈ψ f 0|(J†H−H0J†)P(e−βH)Jeine−βH0 |ψi〉 (3.5)

where the initial and final wave packets must be sufficiently narrow, β must be chosen based on
the energy scale, n must be sufficiently large and the polynomial P(x) must accurately approximate
e2inx on [0,1]. These approximations must be done in the proper order. (1) First choose a sufficiently
narrow wave packet in momentum space. (2) Choose β based on the energy scale. (3) For the
choice of β and wave packet choose n large enough for convergence. (4) Given the n from step 3
construct a polynomial approximation to e2inx for x ∈ [0,1].
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This computational method was tested for scattering from a separable potential with the range
of a pion exchange interaction and a strength chosen to produce a bound state with the binding
energy of a Deuteron:

〈k′|V |k〉=− λ

(m2
π +k′2)(m2

π +k2)
. (3.6)

While this is not a Euclidean calculation, it is exactly solvable and provides a means to precisely
test the use of the invariance principle, narrow wave packets and the polynomial approximation to
eine−βH

in the computation of sharp-momentum transition matrix elements. In this calculation the
sharp-momentum transition matrix elements were extracted directly from S-matrix elements rather
than using (3.5).

The result of this exploration was that convergence was achieved for a wide range of momenta,
between 50 MeV and 2 GeV [10]. The parameters of the approximations were chosen to get better
than a 1% error in the scattering amplitude. The largest source of error (by far) was the wave packet
width. For wave packets chosen to give an error better than 1% the n values were a few hundred and
the degree of the polynomial was slightly higher. The polynomials were accurately approximated
using a Chebyshev expansion. The parameter β was chosen so βE was a number of order unity.
The results are shown in the table

Table 1: Sharp-momentum transition matrix elements

k0 Real T Im T % error
0.05 2.18499e-1 -1.03160e+0 0.0982
0.1 -2.30337e-1 -4.09325e-1 0.0956
0.2 -1.01512e-1 -4.61420e-2 0.0981
0.3 -3.46973e-2 -6.97209e-3 0.0966
0.4 -1.39007e-2 -1.44974e-3 0.0997
0.5 -6.44255e-3 -3.86459e-4 0.0986
0.6 -3.34091e-3 -1.24434e-4 0.0952
0.7 -1.88847e-3 -4.63489e-5 0.0977
0.8 -1.14188e-3 -1.93605e-5 0.0965
0.9 -7.28609e-4 -8.86653e-6 0.0982
1.0 -4.85708e-4 -4.37769e-6 0.0967
1.1 -3.35731e-4 -2.30067e-6 0.0987
1.2 -2.39235e-4 -1.27439e-6 0.0968
1.3 -1.74947e-4 -7.38285e-7 0.0985
1.4 -1.30818e-4 -4.44560e-7 0.0955
1.5 -9.97346e-5 -2.76849e-7 0.0956
1.6 -7.73390e-5 -1.77573e-7 0.0992
1.7 -6.08794e-5 -1.16909e-7 0.0964
1.8 -4.85672e-5 -7.87802e-8 0.0956
1.9 -3.92110e-5 -5.42037e-8 0.0967
2.0 -3.20000e-5 -3.80004e-8 0.0966
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These calculations support the possibility of directly performing scattering calculations in a
Euclidean representation. The main challenge for using this method is how to include dynamics.
The physics is in the Euclidean Green functions; these have to be computed or modeled. Reflec-
tion positivity puts strong constraints on these models. A structure theorem for reflection positive
distributions is an important goal of this research program. This is needed to identify acceptable
models that have Hilbert space inner products. For a theory like QCD both cluster properties and
reflection positivity are limited to initial and final states being local color singlets. For this reason
a formulation directly in terms of gauge-invariant degrees of freedom is another important goal.
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