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1. Introduction

Using the example of configurations generated with the worm algorithm for the two-dimensional
Ising model, we propose renormalization group (RG) transformations, inspired by the tensor RG
(TRG) [2, 3, 4], that can be applied to arbitrary sets of images. We discuss how quantities of interest
behave under successive applications of these blocking transformations and suggest ways to obtain
data collapse and compare results with the two-state TRG approximation near the fixed point. We
begin with the well-known Ising model in two dimensions with hamiltonian and partition function

H =−J ∑
〈i, j〉

σiσ j, Z = ∑
{σi}

e−βH/T (1.1)

with β = 1/T , and σi = ±1. For simplicity, we choose units in which J/kB = 1. The partition
function can be rewritten using the character expansion [5]:

exp(βσ) = cosh(β )+σ sinh(β ) = cosh(β )(1+σ tanh(β )). (1.2)

This allows us to reformulate the model in terms of integer variables that live on the links of the
lattice. In doing so we are left with the restriction that the sum of the link variables associated with
each site must be even, i.e. only those configurations consisting of closed loops will contribute
to the partition function. In terms of these link variables, for a lattice of volume V = L× L the
partition function is now

Z = 2V cosh(β )∑
Nb

(tanh(β ))NbN (Nb) (1.3)

where Nb is the total number of occupied links and N (Nb) denotes the number of legal graphs
with Nb links. We can use the fact that 〈E〉=− ∂ lnZ

∂β
to relate 〈Nb〉∝ 〈E〉, and obtain an expression

for the fluctuation in the average number of bonds

〈∆2
Nb
〉 ≡ 〈(Nb−〈Nb〉)2〉, (1.4)

which is analogous to the specific heat per site in the original theory. From the logarithmic singu-
larity of the specific heat, we find that

〈∆2
Nb
〉

V
=
−2
π

ln(|T −Tc|)+ · · · . (1.5)

Contributions to Z are sampled using the Worm Algorithm [6], which can be represented as two-
dimensional grayscale images of size 2L× 2L, each pixel being equal to one half of the lattice
spacing. Each site, link, and plaquette of the lattice gets mapped to an individual pixel, which will
take on a nonzero value if and only if it corresponds to an occupied link in the lattice. An example
of this representation can be seen in Fig 1.

2. Principal component analysis and criticality

Principal component analysis (PCA) is a standard method to analyze sets of images. It is
often used to reduce the dimensionality of a dataset to the most important "directions". For our
example, at a given value of β , our data of interest consists of Nconfigs images {~v}Nconfigs

n=1 , each of
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Figure 1: (a) Legal worm configuration on an L×L lattice with periodic boundary conditions and; (b) its
equivalent representation as a 2L×2L black and white pixel image. Figure reproduced with permission from
[1], @2018 APS.

which is a single row vector ~vn ∈ R4V , with each vi ∈ {0,1}. We can construct the covariance
matrix describing this data set

Si j =
1

Nconfigs

Nconfigs

∑
n=1

(vn
i −〈vi〉)

(
vn

j −〈v j〉
)
, (2.1)

where indices i, j = 1, . . . ,4V label the pixels of the nth image~vn, and 〈vi〉 denotes the average value
of the jth pixel across all images. PCA then extracts the solutions to Suα = λαuα and orders them
in decreasing magnitude of λα . Under mild assumptions and an easily justified approximation [1],
we found a relation between the largest PCA eigenvalue λmax and the logarithmic divergence of the
specific heat, namely

λmax ≈
3
2
〈∆2

Nb
〉

V
≈− 3

π
ln(|T −Tc|) (2.2)

An independent confirmation of the approximate validity of this relationship can be seen in Fig 2.

3. TRG coarse-graining

We can use the constraints imposed by the character expansion to build a tensor

T (i)
xx′yy′(β ) = [tanh(β )](nx+nx′+ny+ny′ )/2×δnx+nx′+ny+ny′ ,0 mod 2. (3.1)

located at the ith site of the lattice, with integer variables nµ̂ ∈ {0,1} on each of the links x,x′,y,y′

and the δi, j is satisfied if the sum of the nµ̂ are even. By contracting these tensors together in the
pattern of the lattice, we recreate the closed loop paths sampled by the worm algorithm. In terms
of these tensors the partition function can be written as shown in Eq. 3.2. The most important
aspect of this reformulation is that it can be coarse-grained efficiently. Under this transformation,
the partition function becomes

Z = 2V (cosh(β ))2V Tr∏
i

T (i)
xx′yy′ −→ 2V (cosh(β ))2V Tr∏

2i
T ′(2i)

XX ′YY ′ , (3.2)
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Figure 2: λmax and 3
2

〈
∆2

Nb

〉
/V (per unit volume) vs. T , illustrating the relation between the eigenvalue

corresponding to the first principal component and the logarithmic divergence of the specific heat. The inset
shows a qualitative agreement near the critical temperature. Figure reproduced with permission from [1],
@2018 APS.

where 2i denotes the sites of the coarser lattice with twice the lattice spacing of the original lattice.
This can’t be repeated indefinitely, and we are forced to truncate by projecting the product states
onto a smaller number of states that optimizes the closeness to the exact answer [3]. Using this
blocking procedure, the scale factor is b = 2, with eigenvalue in the relevant direction λ = b1/ν = 2
since ν = 1. Starting with an initial lattice of size L = 64, after ` iterations we are left with an
effective size of the coarse-grained lattice Leff = L/b`.
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Figure 3: (a) T1100 vs. T − T (2s)
c under successive iterations of the blocking transformation, ; (b) T1100

vs. (T − T (2s)
c )/Leff illustrating the data collapse, where T (2s)

c is the critical temperature of the two state
projection. Figure reproduced with permission from [1], @2018 APS.

We can compute 〈Nb〉 using this tensor method and compare it to our result from the worm
algorithm. Using Nb = ∑` n` for the sum of bond numbers at every link, we have for 〈Nb〉

〈Nb〉=
1
Z ∑
{n}

(
∑

l
nl

)(
∏

l
tanhnl (β )

)
×

(
∏

i
δ
(i)
nx+nx′+ny+ny′ ,0 mod 2

)
. (3.3)

This can be viewed as 〈Nb〉 = ∑`〈n`〉. By translation and 90◦ rotational invariance, all 〈n`〉 are
equal. Consequently, it is enough to calculate 〈n`〉 for one particular link (call it 〈n〉) and multiply
it by 2V : 〈Nb〉 = 2V 〈n〉. The procedure for calculating 〈n〉 is detailed in [1]. The results of this
calculation are shown in Fig 4.
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Figure 4: (a) 〈Nb〉 vs (T −2.46) under successive blocking steps calculated using 2-state HOTRG. (b) 〈Nb〉
vs (T − 2.46)/Le f f Note that the value of 2.46 was determined qualitatively by choosing the value which
gave the best resulting data collapse. Figure reproduced with permission from [1], @2018 APS.

4. Image coarse-graining

As in the TRG coarse-graining procedure, the image is first divided up into blocks of 2× 2
squares, each of which is then replaced by a single site with new link variables determined by the
sum of the external link variables in a given direction. Explicitly, if a given block has exactly one
external link in a given direction, the blocked site retains this link in the blocked configuration,
otherwise it is neglected. We denote this particular blocking procedure 1+1→ 0. An example of
this blocking procedure carried out on a sample configuration can be found in [1]. This choice of
blocking procedure is particularly useful since it maintains the closed loop restriction and can be
iterated efficiently.

The first observation of this iterated blocking procedure is that it preserves the location of
the peak of the fluctuations 〈∆2

Nb
〉, and can be stabilized for the first few iterations by dividing by

Veff ln(Leff), as seen in Fig 5. Next, we consider 〈Nb〉 for successive iterations. The results are
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Figure 5: 〈∆2
Nb
〉 vs. T under iterated blocking steps. The results are scaled by 1/Ve f f log(Le f f ) in order to

demonstrate the data collapse near the critical temperature. This collapse is especially apparent in the inset,
which shows the results under the first three blocking steps, with Leff = 64,32,16, and 8. Figure reproduced
with permission from [1], @2018 APS.

shown in Fig 6. The behavior of the results for both high and low temperatures can be understood
by considering the different types of plaquettes that are possible [1]. An approximate data collapse

4



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
2
4
5

Machine learning in the Ising Model Samuel Foreman

1.0 0.5 0.0 0.5 1.0
T 2.269

0.0

0.2

0.4

0.6

0.8

1.0

N
b

/V
ef

f

(a)

Expansion
Iteration 0
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
(T 2.269) / Leff

0.0

0.2

0.4

0.6

0.8

1.0

N
b

/V
ef

f

(b)

Iteration 0
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

-0.15 -0.1 -0.05 0.0 0.05 0.1
0.0

0.5

1.0

Figure 6: (a) 〈Nb〉 vs. T under iterated blocking steps The dashed black line illustrates the high temperature
expansion, showing that the dominant configurations are those consisting of small, isolated plaquettes. (b)
〈Nb〉 vs. (T −2.269)/Le f f . Figure reproduced with permission from [1], @2018 APS.

can be obtained by rescaling the temperature axis with respect to the critical value as in Fig 3.
After this rescaling by a factor 2 at each iteration we observe a reasonable collapse on the low-
temperature side, but since the unrescaled curves merge on the high temperature side, the rescaling
then splits them and there is no collapse on that side.

5. Possible applications: CIFAR-10

For a possible application of these ideas, we consider the CIFAR-10 image set [7] consisting of
60,000 32×32 color images in 10 classes. First, each of these images were converted to a grayscale
with pixel values in the range [0,1]. Next, a grayscale cutoff value was chosen so that all pixels
with values below the cutoff would become black, and pixels above the cutoff would become white,
resulting in images consisting entirely of black and white pixels. Finally, each of these images were
converted to “worm-like" images by drawing the boundaries separating black and white collections
of pixels. An example of these preprocessing steps are illustrated in Fig. 7. This process was
carried out on a mini-batch consisting of 500 randomly selected images from the CIFAR-10 image
set. For each image in our mini-batch, we calculated 〈Nb〉 and 〈∆2

Nb
〉 over a range of grayscale

cutoff values in [0,1] in steps of 0.02. Each of these images were then iteratively blocked using the
(1+1→ 0) blocking procedure described in Sec. 4, calculating 〈Nb〉 and 〈∆2

Nb
〉 for each successive

blocking step, as shown in Fig. 8. Immediately we see that there is no identifiable low temperature
phase, and that for cutoff values near both 0 and 1, we obtain images which are mostly empty,
similar to the high temperature configurations obtained from the worm algorithm. This suggests
that there is no such notion of criticality (as characterized by the abrupt transition from a low to
high temperature phase) like we found for the two-dimensional Ising model.
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0.75. Figure reproduced with permission from [1], @2018 APS.
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