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The critical point in particle physics at high temperature is studied through the stochastic gas of
scalars, the dilatons, in the model that implies the spontaneous breaking of an approximate scale
symmetry. We found the critical temperature as a function of a dilaton mass, and the fluctuation
of particle density grows up very sharply at critical point. Our results also suggest that the critical
point may be identified through the fluctuation in yield of primary direct photons induced by
conformal anomaly of strong and electromagnetic sectors.
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1. Introduction

The spontaneous breaking of symmetry has a major role in particle physics and cosmology
where the phase transitions (PT) can occur at extreme conditions (e.g., high enough temperature,
baryonic density, chemical baryonic potential). The critical point (CP) of PT corresponds to an ini-
tial thermal state (of matter) which is invariant under the conformal group. In the early Universe,
the light massive and/or massless states are emerged. The critical phenomena if occurred are con-
sidered here through quantum PT with Bose-Einstein condensation (BEC) of the scalar stochastic
field in a single zero mode of an almost ideal Bose-gas that suggests the breaking of conformal
symmetry.

Quantum effects, e.g. gluon fluctuations, break conformal (scale) invariance. It is seen through
the anomaly in the trace of energy-momentum tensor θ

µ

µ = ∂µSµ 6= 0, where the dilatation cur-
rent Sµ = θ µνxν does not conserved itself with respect to the scale transformations of coordinates
xµ → ωxµ (ω is an arbitrary constant). The dilaton appeared as a pseudo-Goldstone boson is as-
sociated with the chiral condensate occurred in the region where the gauge coupling constants are
slowly running and an effective fermion coupling constant does reach the critical value [1]. Be-
cause of the presence of strong gluon fields, the QCD vacuum is disordered and scale invariance
is destroyed by the appearance of the dimensional scale M = MUV exp

[
−8π2/(b0 g2)

]
, with MUV

being the ultra-violet (UV) scale, g is the bare gauge coupling constant and b0 is the first coeffi-
cient in the QCD β -function, β (M) 6= 0. The breaking of conformal invariance assumes that all the
processes are governed by the conformal anomaly (CA) resulting from running coupling constant
g(M) in β -function related to divergence of Sµ . From this, Sµ is already non-conserved in the
theory containing, e.g., the gluon and quark degrees of freedom (d.o.f.). The divergence of Sµ is
proportional to β -function and the quark masses. There could be an approximate scale (dilatation)
symmetry if β (g) is small enough and g is slowly running with M. Theory becomes conformal
in the infra-red (IR) with the non-trivial solution α?

s = −2π b0/b1 (IR fixed point (IRFP)) in the
perturbative domain if b0 = (11Nc− 2N f )/3 is small (Nc and N f are the numbers of colors and
flavors, respectively). The dilatons are unstable, they decay into two photons, where CA acts as a
source of primary direct photons. The signature of CP is non-monotonous behavior of observable
fluctuation where the latter increases very crucially. The dilaton is a messenger (mediator) between
conformal sector and the Standard Model (SM). However, at high enough temperatures the con-
formal sector has no direct couplings to SM because of absence of CA (θ µ

µ = 0). We suggest the
novel approach to an approximate scale symmetry breaking with the challenge phenomenology
where the primary direct photons induced by CA are in fluctuating regime The latter is an indicator
of CP if the correlation length grows to become very large.

2. Dilatons through quantum statistical states

We start with the dilaton-pion model given by the Lagrangian density (LD)

L =
1
2

f 2
σ

(
∂µeσ

)2
+

1
2

f 2
π e2σ

∂µπ + ..., (2.1)
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which is scale invariant under transformations of coordinates xµ → ωxµ , if π(x) transforms as
π(x)→ π(xeω) and the dilaton field σ transforms non-linearly

σ(x)→ σ(xeω)+ω. (2.2)

LD (2.1) has the more suitable form L = (∂ χ)2/2+( fπ/ fχ)
2 χ2 ∂π + ..., if one makes redefinition

of the dilaton field σ(x)→ χ(x)= fχ eσ(x), which transforms non-linearly under (2.2), 〈χ〉= fχ . Sµ

acting on the vacuum |0〉 defines χ: 〈0|Sµ |χ(p)〉= i pµ fχ , ∂µ〈0|Sµ(x)|χ(p)〉= 〈0|θ µ

µ (x)|χ(p)〉=
− fχ m2

χ e−i px, where for on-shell case 〈0|θ µν(x)|χ(p)〉= fχ(pµ pν−gµν p2)e−i px, p2 =m2
χ . Here,

mχ is the mass of the dilaton, pµ is the momentum conjugate to xµ . fχ is the decay constant of
a dilaton. We suppose that at the scale larger than that of the confinement scale Λ the dilaton is
formed as the bound state of two gluons, the glueball χ = O++, with the mass mχ ∼ O(Λ). The
characteristic feature of the CP is sharp increasing of the fluctuations of the order parameter field
χ . They act as a regulator in the IR with correlation length ξ = m−1

χ . The latter is not measured di-
rectly, however, it influences the fluctuations of observed particles (observables), e.g., the primary
photons to which the critical mode couples. In the vicinity of CP, ξ is much higher that that of a
size of the particle interacting region at early times.

Consider the system containing dilatons as almost ideal weakly interacting stochastic gas at
finite temperature. It may correspond to the state of almost quark-gluon plasma in terms of ideal
liquid with minimal viscosity. In the state of statistical equilibrium at temperature T = β−1 the
partition function for N particles is

ZN = Spe−H β , (2.3)

where H is the Hamiltonian H = ∑1≤ j≤N H( j), and β in (2.3) differs from those of the QCD
β - function. For the system of regular dilaton functions σ f (x) in f representation one has the
equation H( j)σ f (x j) = F( f )σ f (x j), where H =∑ f F( f )b+f b f =∑ f F( f )n f in terms of operators
of creation b+f and annihilation b f ; n f is an occupation (particle) number. Here, F( f ) = E( f )−
µ Q( f ) with E( f ) being the energy, µ is the chemical potential, Q( f ) is the conserved charge with
an average density

〈q〉= 1
Ω
〈Q〉= 1

Ω

1
β

∂

∂ µ
lnZN ,

Ω is the volume of a system. In quantum statistical mechanics where the open system has a thermal
contact and a particle interaction with a reservour, Q is an operator N f of particles of the type f with
the mean value Tr{ρ N f } = n̂ f Ω, where ρ is the statistical operator, n̂ f is the density of particles
of the type f . Interactions between glueballs should lead to thermal equlibrium, and in case of
large n f to the formation of BEC. In principle, operators b f can be distorted by random quantum
stochastic fluctuations through the stochastic operator r f , b f → b f = a f + r f , where a f is the bare
(annihilation) operator. The function ZN (2.3) has the form [2]

ZN = ∑
...n f ..., ∑ f n f =N

e−β ∑ f F( f )n f . (2.4)

Since all the operators ...n f .. commute to each other, they may be clarified through the observables.
The calculation of (2.4) meets difficulties because of the condition ∑ f n f =N for fixed N and within
the limit N→∞ in the final stage calculations. The latter condition is important because of particle
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decays: the glueballs are unstable, hence they may decay into two primary direct photons (not
produced from hadron decays) which are registered as a signal that the vicinity of CP is approached.
The phase transitions are characterised through the singularities (discontinuities) in the dependence
of various observables on the parameters, e.g., temperature, chemical potential etc. On the plain
of the phase diagram, CP manifests itself through the critical chemical potential µc and the critical
temperature Tc. Let us consider the following power series

P(µ̄) =
∞

∑
N=1

ZN µ̄
N , (2.5)

which is the scan function on µ and β , where µ̄ = µ/µc. Having in mind (2.4) one has

P(µ̄) = ∑
...n f ...

e−β ∑ f F( f )n f µ̄∑ f n f = ∏
f

[
∑

0≤n<∞

e−βF( f )n
µ̄

n

]
= ∏

f

1
1− µ̄e−F( f )β

. (2.6)

Let us consider for simplicity that F( f ) ≥ 0 in (2.6). Actually, the convergence radius R of the
series (2.5) will not be less than 1. In the vicinity of CP (µ̄ ' 1) one has µc < E( f )/Q( f ), that is
trivial because of the dilaton mass mχ → 0 if E = |~p|2/(2mχ), where |~p| is the momentum of χ .

Let us consider (2.5) in the form

P(µ̄)
µ̄N =

∞

∑
N′=0

ZN′ µ̄
N′

µ̄N (2.7)

on the real axis 0 < µ̄ < R. Because of positive ZN′ the scan function (2.7) has the only one
minimum on (0,R)

d2

dµ̄2

[
P(µ̄) µ̄

−N]= ∞

∑
N′=0

(N′−N)(N′−N−1)ZN′ µ̄
N′−N−2 > 0.

The function (2.7) tends to infinity when µ̄ → 0 and when µ̄ → R. In the interval (0,R) there is a
point µ̄ = µ̄0 at which (2.7) has a single minimum , i.e.

d
dµ̄

[
P(µ̄) µ̄

−N]
|µ̄=µ̄0

=
∞

∑
N′=0

ZN′ (N′−N) µ̄
N′−N−1
|µ̄=µ̄0

= 0.

If one goes alone the vertical axis, (2.7) has a maximum at µ̄0. As long as µ̄ < µ̄0 no state with
Q 6= 0 can compete with the vacuum state (E = 0, Q = 0) for the role of the ground state. In case
when µ̄ > µ̄0, the point µ̄ = µ̄0 is the ground state at given µ . In the phase space the spectrum of
"quasimomenta" f is almost continuous, and there will be an exact continuos spectrum in the limit
Ω→∞. The number ∆N of different ∆ f in volume Ω is (∆N/∆ f ) = const ·Ω. Having in mind that

P(µ̄) = exp

{
−∑

f
ln
[
1− µ̄ e−F( f )β

]}
,

one can find the asymptotic equality ∑ f ln
[
1− µ̄ e−F( f )β

]
=N Φ(µ̄), where Φ(µ̄)= const ·vβ Kχ(µ̄),

v = Ω/N. Kχ(µ̄) is the thermochemical potential of the dilaton χ

Kχ(µ̄) = β
−1
∫

ln
[
1− µ̄ e−F( f )β

]
d f , (2.8)

3
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which gives the contribution to thermodynamic potential K = Kχ +Vχ +λ ( fχ/2)4. Here, Vχ is the
potential term in LD of the dilaton Lχ = (1/2)∂µ χ∂ µ χ−Vχ , Vχ = (λ/4)χ4[ln(χ/ fχ)−1/4]. The
term λ ( fχ/2)4 in K is added so that K = 0 at T = 0 and χ = fχ . In the vicinity of CP, the free
gluons are disfavored as appropriate degrees of freedom in the phase with confinement of quarks.
The thermodynamic potential K does account for dilaton (glueball) and gluon degrees of freedom:
K = θ(βc−β )Kχ(µ̄)+θ(β−βc)Kg, where Kg is an effective gluon thermodynamic potential with

the energy Eg =
√
|~p|2 +m2

g, mg is an effective gluon mass. Kg is model-dependent function and
we propose tfhe following its form

Kg = β
−1
∫

ln
[
1− e−Eg( f )β

]
d f . (2.9)

Both forms (2.8) and (2.9) match to each other at CP. The ground state µ̄0 is defined from the Eq.

∑
f

n̄ f = ∑
f

1
µ̄
−1
0 eF( f )β −1

= N. (2.10)

The infinite number of particles N is expected if µ̄0 = 1 and F( f ) = 0. Hence, µ̄0 may be associated
with CP. The large number N is correct if the dilatons are light. This is important in the sense of
the proposal to condensed dark matter bosons in the early stage after (heavy ion) collisions. The
latter in some sense corresponds to Bose star formation as the lamps of Bose-Einstein condensate
bounded by self-gravity [3].

3. A vicinity of the critical point

Consider the nonrelativistic model where the glueballs are produced in the volume Ω as a cube
with the side of the length L = Ω1/3. In the limit Ω→ ∞ and for v = const we consider two cases:
high temperature case A), where µ̄0 eµ Qβ < 1, and low T case B), where µ̄0 eµ Qβ ∼ 1. In case A)
the function n̄ f is regular on f , and the sum ∑ f n̄ f is replaced by the integral, where the spectrum
of f is continuous at Ω→ ∞:

1
v
=

1
Ω

∑
f

n̄ f →
1

(2π)3

∫
n̄( f )d3 f .

Using the form of n̄( f ) (2.10) we have an equality:

∫
∞

0

x2 dx
µ̄
−1
0 e−µ Qβ ex2−1

=
2π2

v

(
β

2mχ

)3/2

. (3.1)

The integral in l.h.s. of (3.1) increases if µ Q+T ln µ̄0→ 0 that will allow one to find an unequality

2π2

v

(
β

2mχ

)3/2

<
∫

∞

0

x2 dx
ex2−1

.

The case A) is realized when T > Tc, where

Tc =
1

2mχ

(
2π2

vB

)2/3

, B =

√
π

4
·2,612..., mχ 6= 0.
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One can easily find the singular behavior of the correlation length ξ , where divergence of ξ is
governed by the ground state µ̄0:

ξ = 2µ Q
(

vB
2π2

)2/3

ln−1
(

1
µ̄0

)
. (3.2)

Actually, ξ → ∞ at µ̄0→ 1 that means CP (µ̄0 = µ̄ = 1).
In case B) our interest is in small |p| ≤ δ (maximal N), where CP is approached. Here

1
Ω

∑
|p|≤δ

n̄p =
1
v
− 1

Ω
∑
|p|≥δ

n̄p,

where

lim
δ→0, N→∞

1
Ω

∑
|p|≤δ

n̄p =
1
v
− 1

(2π)3

∫
|p|≥δ

d3 p
eEpβ −1

=
1
v

[
1−
(

βc

β

)3/2
]
. (3.3)

In (3.3) the only part of total number of particles proportional ∼ (βc/β )3/2 is distributed on all the
spectrum of momenta. The rest one ∼ [1− (βc/β )3/2] is the scalar condensate. The fluctuation of
particle density in volume V , which is (much) less than Ω, is the function of ξ

〈(nV −〈nV 〉)2〉= 〈nV 〉

[
1+

√
2v

π2

(
T
ξ

)3/2 ∫ ∞

0

x2 dx
(µ̄−1

0 e−µ Qβ ex2−1)2

]
, 〈nV 〉=V/Ω. (3.4)

The sharp increasing of (3.4) is expected at CP, and it is ξ -independent.

4. Direct photons at CP

In the exact scale symmetry, χ couples to SM particles through the trace of θµν

L =
χ

fχ

(
θ

µ

µtree +θ
µ

µanom

)
, (4.1)

where the first term is (contributions from heavy quarks and heavy gauge bosons are neglected)

θ
µ

µtree =−∑
q
[mq + γm(g)]q̄q− 1

2
m2

χ χ
2 +∂µ χ∂

µ
χ,

q is a quark d.o.f. with the mass mq, γm are the corresponding anomalous dimensions. In contrast
to SM, the dilaton couples to massless gauge bosons even before running any SM particles in the
loop, through the trace anomaly. The latter has the following term in (4.1) for photons and gluons:

θ
µ

µanom =− α

8π
bEM FµνFµν − αs

8π
∑

i
b0i Ga

µνGµν a,

where α is the fine coupling constant, bEM and b0i are the coefficients of electromagnetic (EM) and
QCD β -functions, respectively. If the strong (and EM) interactions are embedded in the conformal
sector the following relation for light and heavy particles sectors is established above the scale

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
2
5
1

Short Title for header G. Kozlov

Λ: ∑light b0 = −∑heavy b0, where the mass of χ splits the light and heavy states. The anomaly
(non-perturbative) term for gluons in (4.1)

αs

8π
blight

0 Ga
µνGµν a =

β (g)
2g

Ga
µνGµν a, blight

0 =−11+
2
3

nL

is evident, where the only nL particles, lighter than χ , are included in the β - function, β (g) =
blight

0 g3/(16π2). For mχ ∼ O(Λ) one has nL = 3 that indicates about 14 times increase of the
dilaton-gluon-gluon coupling strength compared to that of the SM Higgs boson. The partial decay
width χ → γγ is

Γ(χ → γγ)'
(

α Fanom

4π

)2 m3
χ

16π f 2
χ

,

where the only CA does contribute through Fanom =−(2nL/3)(bEM/blight
0 ), blight

0 =−11+(2/3)nL,
bEM = −4∑q:u,d,s e2

q = −8/3, eq is the charge of the light quark. In the vicinity of IRFP, there are

fluctuations of dilaton field with mχ '
√

1−N f /Nc
f Λ [4], where Nc

f is the critical value of N f

corresponding to αc
s at which the chiral symmetry is breaking and the confinement is emerged.

When one approaches the CP, the absolute value of Fanom decreases due to increasing of blight
0 as

nL → 0. The second-order phase transition is characterized by the limits N f → Nc
f and Λ→ 0,

hence no direct photons should be evident through a detector. In the IR one can estimate the
fluctuation rate relevant to primary photons compared to two photons escape due to decay of neutral
π0 mesons, π0→ γγ (at very large distances, the effective d.o.f. are pions):

rχ ∼ Γ(π0→ γγ)(Λ/nL)
2

ξ
3, (4.2)

where ξ is given by (3.2). Actually, rχ (4.2) in terms of confinement scale Λ is scheme independent.
At CP, rχ→∞ when the number of light quarks nL→ 0 as well as the fluctuation length ξ is sharply
increasing. The measurement of photon fluctuations can be used to determine whether the quantum
system is in the vicinity of CP or not.

5. Conclusion

In the novel approach to an approximate scale symmetry breaking the CP is achieved at higher
µ , the case B), with smaller particle momentum (and, hence, the energy). In the vicinity of CP
we find the the sharp increasing of particle density at CP. There is non-monotonous behavior in
fluctuations of direct photons which grow in IR to become large at CP. The location of CP for the
given experimental conditions is obtained by measuring the ratios of γ-quanta yields and compared
(fitting) to known model with T and µ .
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