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1. Introduction

Monte Carlo simulations of the lattice theories provide a way to investigate the nonperturba-
tive behavior of strongly interacting particles. Numerical studies of various effective models [1–23]
show that quark confinement is realized by the formation of “flux tubes”, in which the chromoelec-
tric field created by a quark-antiquark pair is confined to a narrow region around the line connecting
the quarks, which provides linear potential between the quarks [24–27]. The field in such flux tubes
is mainly directed along the tube axis and does not change when moving along the axis far enough
from the sources [10]. Any theory claiming to explain the mechanism of confinement should be
able to describe the field distribution in the flux tube in good agreement with the lattice data.

We report on measurements of all the components of the chromoelectromagnetic field created
by a static quark-antiquark pair in pure gauge SU(3) at zero temperature, for different values of
quark-antiquark separation. Our results show that while the longitudinal field component is domi-
nant, the behavior of the transverse components can be used to subtract the perturbative part of the
field, getting what we identify as the confining field forming the flux tube.

2. Lattice observables and details of measurements

We performed our simulations for a pure SU(3) lattice gauge theory in four dimensions, with
standard Wilson action. The simulations were performed using the publicly available MILC code,
modified to introduce the relevant observables.

To measure the field generated by a quark-antiquark pair we use the connected correlation
function [5, 6, 28, 29]

ρ
conn
W,µν =

〈
tr
(
WLUPL†

)〉
〈tr(W )〉

− 1
3
〈tr(UP)tr(W )〉
〈tr(W )〉

, (2.1)

where UP is a plaquette in the µν plane, W is a Wilson loop that generates a static quark-antiquark
pair, and L is a Schwinger line connecting the plaquette to the Wilson loop (see Figure 1). The
connected correlation function (2.1) has a naive continuum limit [6]

ρ
conn
W,µν

a→0−→ a2g
[〈

Fµν

〉
qq̄−

〈
Fµν

〉
0

]
, (2.2)

where the subscript qq̄ refers to the average field in presence of a quark-antiquark pair and the
subscript 0 denotes average value in vacuum, which is expected to vanish. Different orientations of
the plaquette correspond to the three components of the chromoelectric field ~E, when the plaquette
is time-like, and to the three components of the chromomagnetic field ~B, when the plaquette is
spatial.

To reduce fluctuations we used a smearing procedure consisting of one HYP smearing step [30]
with parameters (α1,α2,α3) = (1.0,0.5,0.5) for the links in the temporal direction, and a set of
Nsm APE smearing steps [31] for the links in spatial directions with αAPE = 0.25.

We have performed simulations for the three different values of β , described in Table 1. To set
the physical scale a parametrization given in [32] was used, using the value

√
σ = 420 MeV for the

string tension. The measurements in each case were taken every 100 lattice updates, discarding a
few thousands trajectories at the beginning to reach thermalization. Error analysis was made using
jackknife algorithm, with varying blocking size.
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Figure 1: The connected correlator given in Eq. (2.1) between the plaquette UP and the Wilson loop (sub-
traction in ρconn

W,µν
not explicitly drawn).

β lattice d [fm] statistics smearing steps
6.370 0.951(11) 5300 100
6.240 484 1.142(15) 21000 100
6.136 1.332(20) 84000 120

Table 1: Summary of the simulation parameters.

3. Measurement results and Coulomb field subtraction

At each value of β we measured all six components of the fields at the set of displacements
(xl,xt) from the static quark (see Figure 1). The equivalence of the two choices of the direction of
xt perpendicular to xl , coming from the rotational symmetry of the system, was explicitly checked
numerically. In what follows, the x axis is chosen along the quark-antiquark line, and the y axis
along the direction of transverse displacement.

The three components of the chromomagnetic field ~B are compatible with zero within errors.
The values of the three components of the chromoelectric field ~E at β = 6.370 as a function of
the displacements xl and xt are shown on the left in Figure 2. The transverse components of the
chromoelectric field can be nicely described as a Coulomb-like field ~EC

~EC(~r;Q,R0) = Q
(

~r1

max(r1,R0)3 −
~r2

max(r2,R0)3

)
, (3.1)

where Q is an effective charge, ~r1 and ~r2 are vectors from the positions of the static quark and
antiquark, respectively, to the point~r where the field is measured. Since the field components are
probed by a plaquette, we consider ~r to be the radius vector to the center of this plaquette. One
important consequence of this is that the field Ez is measured at points that are a half lattice spacing
away from the xy plane, so EC

z is not equal to zero. Finally R0 is an effective radius of the charge,
which we introduced to try to describe the behavior of the field on distances less then three lattice
spacing from the quarks – where the field ~EC fails to give a good description of the measured field.

We performed a series of fit of the two transverse field components Ey and Ez at different
planes transverse to the line connecting the two quarks, treating the effective charge Q and effective
radius R0 as the fit parameters. The results of these fits are summarized in Table 2; the errors of
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Figure 2: Surface and contour plots for the three components of the chromoelectric field (left) and its
nonperturbative part (right) at β = 6.370 and d = 0.951 fm.

fit parameters were obtained from a comparison of the best fit parameters for different transverse
planes at which we managed to obtain a good fit.

In the further analysis we consider the chromoelectric field ~E to consist of two parts - nonper-
turbative part ~ENP and the perturbative Coulomb-like part ~EC,

~E(~r) = ~ENP(~r)+~EC(~r;Q,R0) , (3.2)

taking the values of Q and R0 from the results of our previous fitting analysis. In this way we
extract the nonperturbative contribution to the chromoelectric field. This procedure makes the

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
2
5
3

Spatial structure of the color field in the SU(3) flux tube Volodymyr Chelnokov

β Q R0/a R0 [fm] d [fm]
6.370 0.278(4) 1.920(14) 0.1142(16) 0.951(11)
6.240 0.289(11) 1.92(3) 0.1367(29) 1.142(15)
6.136 0.305(14) 2.15(7) 0.179(6) 1.332(20)

.

Table 2: Values of the fit parameters extracted from Coulomb fits of the transverse components of the
chromoelectric field.

nonperturbative part purely longitudinal, apart from the small region of radius ∼ R0 around the
static quarks. The three components of the obtained nonperturbative field ~ENP for β = 6.370 are
shown on the right in Figure 2. As can be seen from these plots the longitudinal component of
the field after subtraction ENP

x is much more stable under changes of the xl coordinate, making it
useful to extract the shape of the flux tube for small distances between quarks. This fact is more
clear when looking at transverse and longitudinal sections of the field shown in Figure 3. We
remark that while all the plots are given for the β = 6.370 case the results are qualitatively the
same for other β values.
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Figure 3: Transverse (top) and longitudinal (bottom) sections of the longitudinal component of the full
chromoelectric field (left) and its nonperturbative part (right) at β = 6.370 and d = 0.951 fm.

4. Conclusions

We have performed measurements of the six components of the chromoelectromagnetic field
created by a static quark-antiquark pair in the four-dimensional pure gauge SU(3) theory at zero
temperature.

The measured chromomagnetic field is compatible with zero. The transverse components of
the chromoelectric field decay fast with the distance from the two quarks, and can be described by
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the Coulomb-like behavior. Extracting the parameters of the Coulomb law from the transverse field
components, and subtracting the longitudinal component of the resulting Coulomb-like field from
the measured longitudinal chromoelectric field, yields, in a model-independent way, the nonpertur-
bative chromoelectric field forming the confining flux tube, thereby removing (to a certain degree)
the perturbative short-range corrections, existing in the original field. We believe this approach can
be straightforwardly applied also at nonzero temperature and/or within a theory with dynamical
quarks.
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