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We present our preliminary result of the form factor of K → πlν semileptonic decays on the large
volume configuration, L ≈ 10 fm, with the physical mπ and mK using the stout-smearing clover
quark and Iwasaki gauge actions at a−1 = 2.333 GeV. From an interpolation using the data in
small momentum transfers, we determine the semileptonic decay form factors at zero momentum
transfer. The result is compared with the previous lattice calculations. We also estimate the value
of |Vus| by combining our result with the experimental value of the kaon semileptonic decay.
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Calculation of K → πlν form factor in Nf = 2+1 QCD at physical point on (10 fm)3 J. Kakazu

1. Introduction

The weak semileptonic and leptonic decays of kaon have been investigated for a long time. The
decays play an important role to determine Vus, which is one of the Cabbibo-Kobayashi-Maskawa
(CKM) matrix elements [1] to describe the mixing of the mass eigenstates between up and strange
quarks. From the unitary condition of the up quark part in the CKM matrix, ∆u ≡ |Vub|2 + |Vus|2 +
|Vub|2 − 1 must be vanished in the standard model. Therefore, we can examine the existence of
physics beyond the standard model by checking whether the ∆u = 0 or not.

We can determine the value of |Vus| in the two different ways. One uses the form factor of
the kaon semileptonic (Kl3) decay at zero momentum transfer. The other is the ratio of the meson
decay constants, fK/ fπ , which is related to the leptonic kaon (Kl2) decay [2]. It is not possible to
determine |Vus| only from the experiments, because in experimental results, for instance a branching
ratio, |Vus| is multiplied to the form factor or the decay constants. Therefore, some theoretical
evaluations for the form factor and decay constants are necessary. The lattice QCD calculation is
the most precise way to determine these quantities.

The recent results of |Vus| in PDG [3] are given by

|Vus| =

⎧
⎪⎨

⎪⎩

0.2231(8) (form factor)
0.2253(7) (decay constant)
0.2256(8) (unitarity condition)

.

The result from the form factor is estimated by combining the experimental value |Vus| f+(q2 =

0) = 0.2165(4) in Ref. [4], and f+(0) in the FLAG’s value [5]. The result from the decay constant
ratio is estimated by using the experimental value of the Kl2 decay [6], and fK/ fπ in the FLAG’s
value [5]. Another one is estimated by the unitarity condition ∆u = 0 using the most precise result
of |Vud | [7] and ignoring |Vub| due to the small effect (|Vub|≈ O(10−3)) in this estimation.

In the |Vus| estimations, there is difference between the value from the unitarity condition and
that from the form factor by about 2σ . It is still premature to conclude, however, that it is significant
signal of new physics or not.

In order to check whether the difference is significant or not, we need more precise determina-
tion of the form factor by reducing uncertainties of the lattice QCD calculation. The uncertainties
of the form factor in lattice calculations come from the chiral extrapolation, interpolation (or ex-
trapolation) to zero momentum transfer due to the accessible momentum in lattice calculation, and
finite size effect and the continuum extrapolation. In order to suppress these uncertainties as small
as possible, we calculate the semileptonic form factors at physical point on the large volume of
(10.8 fm)3. Therefore, there is no systematic error from the chiral extrapolation, and the finite size
effect is expected to be negligible in this calculation.

2. Calculation of form factors

The Kl3 form factors f+(q2) and f−(q2) are defined by the matrix element of the weak vector
current as,

⟨π(p⃗π)
∣∣Vµ

∣∣K(p⃗K)⟩= (pK + pπ)µ f+(q2)+(pK − pπ)µ f−(q2), (2.1)
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where Vµ is vector current and q = pK − pπ is the momentum transfer. The scalar form factor
f0(q2) is defined by using f+(q2) and f−(q2) as,

f0(q2) = f+(q2)+
−q2

(m2
K −m2

π)
f−(q2) = f+(q2)

(
1+

−q2

(m2
K −m2

π)
ξ (q2)

)
, (2.2)

where ξ (q2) = f−(q2)/ f+(q2). At q2 = 0, the two form factors, f+(q2) and f0(q2) give the same
value, f0(0) = f+(0).

In order to obtain the form factors, we calculate the meson 3-point functions CXY
µ (p⃗′, p⃗, t) with

the weak vector current given by

CXY
µ (p⃗′, p⃗, t) = ⟨0|OY ( p⃗′, t f )Vµ (⃗q, t)O†

X(p⃗, ti)|0⟩ (2.3)

=
ZY (P⃗′)ZX(P⃗)

4EY (P⃗′)EX(p⃗)
1

ZV
⟨Y (p⃗′)

∣∣Vµ
∣∣X(p⃗)⟩e−EY (p⃗′)(t f−t)e−EX (p⃗)(t−ti) + · · · , (2.4)

where ZV is the renormalization factor of the vector current, X ,Y = π,K, and ti < t < t f . Since
we fix p⃗′ = 0⃗ in our calculation, we represent the 3-point function as CXY

µ (p⃗, t) in the followings.
EX(p⃗) and ZX(p⃗) are evaluated from the meson 2-point functions given by

CX(p⃗, t) = ⟨0|OX(p⃗, t)O†
X(p⃗, ti)|0⟩=

|ZX(p⃗)|2

2EX(p⃗)
(e−EX (p⃗)|t−ti|+ e−EX (p⃗)(T−|t−ti|))+ · · · , (2.5)

with the periodic boundary condition in the temporal direction. The terms of the dots (· · · ) are con-
tributions of excited states. The meson masses, mπ and mK , are obtained from a single exponential
fit to each 2-point function. Their energies are determined by the equation EX(p⃗) =

√
m2

X + p⃗2

using the fit result of mX .
In order to calculate the form factors from CXY

µ (p⃗, t) and CX(p⃗, t), we define the following
three quantities [8] as

d1(q, t) =
CπK

4 (⃗0, t)CKπ
4 (⃗0, t)

CKK
4 (⃗0, t)Cππ

4 (⃗0, t)
→ (mK +mπ)2

4mKmπ
( f0(q2

max))
2, (2.6)

d2(q, t) =
CπK

4 (p⃗, t)Cπ (⃗0, t)
CπK

4 (⃗0, t)Cπ(p⃗, t)
→

(
Eπ(p⃗)+mK

mπ +mK
+

Eπ(p⃗)−mK

mπ +mK
ξ (q2)

)
f+(q2)

f0(q2
max)

, (2.7)

d3(q, t) =
CπK

i (p⃗, t)CKK
4 (p⃗, t)

CKK
i (p⃗, t)CπK

4 (p⃗, t)
→ (EK(p⃗)+mK)(1−ξ (q2))

Eπ(p)+mK +(mK −Eπ(p))ξ (q2)
. (2.8)

The right arrow expresses the asymptotic limit of ti ≪ t ≪ t f , where CXY
µ (p⃗, t) and CX(p⃗, t) are

dominated by the π and K states. In the region, the quantities become independent of the time slice
of the vector current t, so that each ratio in the right hand sides of Eqs. (2.6)–(2.8) is obtained by
constant fits of the quantities. From d1(q, t), f0(q2

max) with q2
max = −(mK −mπ)2 is obtained. By

solving the simultaneous equations in Eqs. (2.7) and (2.8), we determine f+(q2) and ξ (q2) at each
q2, and then f0(q2) is evaluated from Eq. (2.2).

3. Simulation setup

We use the configuration generated at the physical point, mπ = 0.135 GeV, on the large vol-
ume corresponding to La = Ta = 10.8 fm (L = T = 128), which is a part of the PACS10 configu-
ration [9]. The configurations were generated by using Nf = 2+1 non-perturbative Wilson clover
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quark action with 6 stout smearing link [10] (smearing parameter ρ = 0.1) and the improvement
coefficient cSW = 1.11, and the Iwasaki gauge action [11] at β = 1.82. The hopping parameters of
degenerated light quarks and strange quark are (κud ,κs) = (0.126117,0.124902), respectively.

In our form factor calculation, we use 20 configurations in total. We adopt 8 positions of the
source time ti = 0,16,32,48,64,72,96,112 per configuration, and 4 choices of the temporal axis
thanks to the hypercube lattice. In the calculation of 2- and 3-point functions, we use Z(2)⊗Z(2)
random wall source spread in the spatial sites, and also color and spin spaces [13]. The number of
the random source is one in each ti. The 3-point function is calculated using the sequential source
technique at the sink time slice t f , where the meson momentum is fixed to zero. We choose the
temporal separation between the source and sink as |t f − ti| = 36 (= 3.0 fm). For the constant
fits of the quantities d1,2,3(q, t) explained in the above, we use the fit range of t = 15− 21 when
ti = 0. We calculate CXY

µ (p⃗, t) and CX(p⃗, t) with the momentum p⃗ = (2π/L)⃗n of |⃗n|2 ≤ 6 without
the twisted boundary condition, where n⃗ is an integer vector. The one elimination jackknife method
is employed to estimate the statistical errors.

We suppress the wrapping around effect of the 3-point function, discussed in Ref. [12], by
averaging the 3-point functions with the periodic and anti-periodic boundary conditions in the
temporal direction.

4. Result

The left panel of Fig. 1 shows the momentum transfer dependence of f+(q2) and f0(q2).
We obtain clear signals for both form factors. Since we have the data at very close to q2 = 0,
which are obtained from d2,3(q, t) with the momentum of |⃗n|2 = 4, it is possible to carry out stable
interpolations to obtain the form factors at q2 = 0.
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Figure 1: (left) q2 dependence of Kl3 form factors. The square and circle symbols denote f+(q2)

and f0(q2), respectively. The dashed and dot-dashed curves represent the simultaneous fit result of
f+(q2) and f0(q2), respectively, with the ChPT forms in Eqs.(4.1) and (4.2). The orange circle in
the far left represents f0(q2

max), which is not included in the fit. The diamond symbol denotes the
fit result of f+(0) = f0(0). (right) The same figure as (left), but near q2 = 0 region.
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For a q2 interpolation of the form factors, the NLO SU(2) ChPT formula [14] is employed,
which is given by

f+(q2) = F+
(

1+(C+
0 +C+

1 s)x+
m2

K
(4π f0)2

(
−3

4
xlogx− xT+

1 (s)−T+
2 (s)

))
, (4.1)

f0(q2) = F0

(
1+(C0

0 +C0
1s)x+

m2
K

(4π f0)2

(
−3

4
xlogx+ xT 0

1 (s)−T 0
2 (s)

))
, (4.2)

where s =−q2/m2
K , x = m2

π/m2
K , f0 = 0.10508GeV, and

T+
1 (s) = [(1− s)log(1− s)+ s(1− s/2)]3(1+ s)/4s2, (4.3)

T+
2 (s) = [(1− s)log(1− s)+ s(1− s/2)](1− s)2/4s2, (4.4)

T 0
1 (s) = [log(1− s)+ s(1+ s/2)](9+7s2)/4s2, (4.5)

T 0
2 (s) = [(1− s)log(1− s)+ s(1− s/2)](1− s)(3+5s)/4s2. (4.6)

In the interpolation, we use the five fit parameters, F+,C+
0 ,C

+
1 ,C

0
0 , and C0

1, while F0 is fixed by use
the constraint f+(0) = f0(0). We also employ the monopole ansatz as another interpolation form
given by

f+(q2) =
F

1+q2/M2
V

and f0(q2) =
F

1+q2/M2
S
, (4.7)

where the fit parameters are F , MV , and MS, and F = f+(0) = f0(0). Using the fit forms we perform
the uncorrelated simultaneous fit with the data for f+(q2) and f0(q2).

The left panel of Fig. 1 shows the simultaneous fit result of f+(q2) and f0(q2) using the ChPT
forms in Eqs. (4.1) and (4.2). The data of f0(q2

max) denoted by the orange circle symbol in the figure
is not included in the fit. The ChPT forms well describe our data, and the value of χ2/d.o.f.≈ 0.03
in the uncorrelated fit. The right panel of Fig. 1 shows the fit result of the form factor at q2 = 0.
The monopole ansatz gives a similar result, whose uncorrelated χ2/d.o.f. ≈ 0.03. From the two
interpolations we obtain our preliminary results of the Kl3 from factor at q2 = 0 given by

f+(0) = f0(0) =

{
0.9549(36) (ChPT)
0.9552(36) (monopole)

. (4.8)

The systematic error of the fit form dependence is much smaller than the statistical error as ex-
pected.

We estimate the absolute value of the CKM matrix element |Vus| from our preliminary result
using the ChPT form by combining the experimental result |Vus| f+(0) = 0.2165(4) [4],

|Vus|= 0.22671(84)(41), (4.9)

where the first error is statistical error, and the second comes from the experiment. The monopole
fit result agrees with this value. Figure 2 shows the comparison of our results from the ChPT and
monopole fits with the PDG’s estimations [3], other lattice results [8, 13–17], and the one from the
unitarity condition ∆u = 0. Our results are relatively higher than the PDG’s value [3] estimated
from the Kl3 form factor and the other lattice calculations, while they are consistent with the ones
determined from the decay constants [3, 9] and also the one of ∆u = 0.
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0.222

0.224

0.226

0.228

|V
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|

ETM Nf=2+1+1
FNAL/MILC Nf=2+1+1
JLQCD Nf=2+1
RBC/UKQCD Nf=2+1
FNAL/MILC Nf=2+1
ETM Nf=2
Unitarity 
PDG result (form factor)
PDG result (decay constant)
preliminary (ChPT)
preliminary (mono)
PACS Nf=2+1 (decay constant)

Figure 2: Comparison of |Vus|. The filled square and circle symbols are our results from the Kl3

form factor with the ChPT and monopole fit, respectively. The filled diamond symbol is estimated
by the decay constant ratio fπ/ fK = 1.1914(16) calculated with the same configuration [9]. The
star and cross symbols express the PDG’s values [3] from the Kl3 form factor and the ratio of the
decay constants. Estimation from our fπ/ fK [9], The open right triangle symbol is estimated from
the unitarity condition ∆u = 0. The other open symbols represent previous lattice QCD results from
the Kl3 form factor [8, 13–17].

In order to test consistency of our result with the experiment, we estimate the slopes of the
form factors λ+,0 defined by

λ+ =
m2

π±phys

f+(0)
f+(t)
dt

∣∣∣∣∣
t=−q2=0

and λ0 =
m2

π±phys

f0(0)
f0(t)
dt

∣∣∣∣∣
t=−q2=0

. (4.10)

Our preliminary results obtained from the ChPT fit are

λ+ = 2.48(8)×10−2, λ0 = 1.36(9)×10−2. (4.11)

We find that the above results are consistent with the ones from the monopole fit as in |Vus|. They are
in good agreement with the experimental resultsλ+ = 2.58(7)×10−2 and λ0 = 1.36(7)×10−2 [18].

5. Summary

We present preliminary results of the Kl3 form factors f+(q2) and f0(q2) in Nf = 2+1 lattice
QCD at the physical point (mπ = 0.135 GeV) on a large volume, whose spatial extent is 10.8
fm. Since we calculate the form factors in close to zero momentum transfer, we carry out stable
interpolations by using the NLO SU(3) ChPT and monopole forms. From the interpolations we
evaluate the slope of the form factors, and find that our results are consistent with the experimental
values. Using our preliminary result of the form factors at the zero momentum transfer, |Vus|
is estimated by combining with the experimental value. Our value is relatively higher than the
PDG’s value and other lattice calculations, while it agrees with the values estimated from the decay
constants and the one from the unitarity condition ∆u = 0. One of important future works in this
calculation is to estimate systematic errors in the form factors, such as excited state contamination.
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