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1. Introduction

An understanding of CP violation is one of the most important goals in physics. The standard
measure of direct CP violation, Re(ε ′/ε), has been experimentally measured, but its predicted
value from standard model is hard to analytically calculate due to the non-perturbative nature of
QCD sector. Lattice QCD enables us to calculate this quantity with controlled errors, and whether
the lattice calculation agrees with experimental value is a good test of the correctness of Standard
Model.

In order to calculate Re(ε ′/ε), the quantity we need to compute is the kaon to two pion(K→
ππ) matrix element of the first-order weak Hamiltonian. During its calculation, an interesting
process, ππ scattering, plays an important role: we not only need energy and amplitude of the ππ

state when calculating the matrix element on lattice, we also need the Lellouch-Lüscher(LL) factor
which is related to the derivative of ππ scattering phase shift with respect to energy.

The ππ scattering phase shift calculation is important for us for another reason: Different from
most lattice groups who use a lattice with perodic/anti-perodic boundary conditions, we use a lattice
with G-parity boundary condition(GPBC)[2] which likely increases the statistical accuracy of our
results (especially those for I = 0 K→ ππ decay) by increasing the energy of the two-pion ground
state to that of the kaon mass. This makes a comparison of our GPBC results for ππ scattering with
the present theory of low-energy ππ scattering especially interesting.

The ππ scattering phase shift has been measured on lattice by many groups, but to date these
calculations have been performed with unphysical pion mass or have ignored the effect of discon-
nected diagrams[4][5]. Now with the ingredients from the calculation of K → ππ with physical
pion mass, together with techniques to suppress the statistical error, we are able to perform a lat-
tice calculation of ππ scattering with physical pion mass for a center of mass energy equals to
kaon mass. In ππI=2 scattering, we find a phase shift of δ = −11.0(2.9)(1.2) at 573MeV. Our
2015 result for the I=0, ππ state was calculated with single ππ interpolating operator and gave the
phase shift of δ = 19.1(2.5)(1.2) at 508MeV. Now, after including a second ππ interpolating oper-
ator, the σ operator, we update our result to δI=0 = 30.9(1.5)(3.0) at 483MeV, which substantially
suppressed the excited state contamination present in our original calculation.

This proceeding summarizes the details of our calculation, and our efforts to suppress the
statistical error and excited state contamination.

2. Computational methods

The isospin I ππ two-point function is determined from Euclidean Green’s function

CI(tsrc, tsnk) = Tr{OI
ππ(tsrc)OI

ππ(tsnk)} (2.1)

After inserting two complete sets of intermediate states, we find

CI(tsrc, tsnk) = 〈π|OI
ππ |π〉〈π|OI

ππ |π〉e−Lt×Eπ + 〈0|OI
ππ |ππ〉〈ππ|OI

ππ |0〉e−t×Eππ

+ 〈ππ|OI
ππ |0〉〈0|OI

ππ |ππ〉e−(Lt−t)×Eππ + 〈0|OI
ππ |0〉〈0|OI

ππ |0〉×δI,0
(2.2)

in the limit where a) t ≡ tsrc− tsnk and b) Lt − t are both large (Lt is the time extent of the lattice).
Notice the first term describes the "around the world effect", which is a small but constant term. The
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second and third terms, which can be combined together into a cosh function of the time separation,
describe the ground state ππ scattering. The last term, which only shows up in I = 0 scattering,
describes the vacuum piece that we are not interested in. It is the biggest source of error because
it is constant which introduces a decreasing signal-to-noise ratio as we increase time separation to
suppress excited state contamination.

The most significant difference between our calculation and those of other groups is the bound-
ary condition: the lattice we use has a G-parity boundary condition[2]. Under this boundary con-
dition, ground state pion is no longer stationary, instead it moves with momentum component π/L
along each direction where we impose GPBC, while the ground state of kaon is still a stationary
one. In our calculation, we impose GPBC along all three space directions, so the momentum of the
ground state pion becomes (π

L ,
π

L ,
π

L ), and by tuning the lattice, we have Eππ ≈ mK .
In order to suppress the systematic error, we use all-to-all propagator[3] to construct finite-

sized pion interpolating operator so that our pion operator has better overlap with pion state, and
our ππ operator has better overlap with the lattice ππ ground state. Here we use 900 low modes
plus 1536 random modes from time/flavor/color/spin dilution to construct an all-to-all propagator,
and choose a 1s hydrogen wave function as smearing function.

Another technique in order to suppress the statistical error in the I = 0 calculation is to use a
time-separated ππ operator. Rather than putting the two pions at the same time slice, we put them
on time slices with a separation of tsep = 4. This suppresses the vacuum noise (the last term in
equation (2.2)) by a factor of 2[6].

In our calculation, we use gauge field ensemble generated with the Iwasaki+DSDR gauge
action and β = 1.75. We use 2+ 1 flavor Möbius domain wall fermions (DWF) with a strange
quark mass ms = 0.045 and a light quark mass ml = 0.0001. The size of our lattice is 323× 64,
with a fifth dimension length of 12. The inverse lattice spacing is a−1 = 1.3784(68)GeV, and pion
mass is mπ = 143.1(2.0)MeV, which suggests that we are doing a calculation with physical pion
mass. We published our original results based on an analysis of 216 configurations in 2015[1], and
now we have generated 1386 configurations.

In addition to the usual ππ interpolating operator, we also include the σ operator which has the
same quantum numbers as the ππ I = 0 state to reduce the effects of excited state contamination in
the I=0 scattering. The ππ and σ operators we choose are (written for simplicity in infinite volume)

σ(t) =
∫

d3r1

∫
d3r2q̄(~r1, t)q(~r2, t)×h(~r1−~r2) (2.3)

π
i
π

j(t, t +4) =
∫

d3r1

∫
d3r2

∫
d3r3

∫
d3r4q̄(~r1, t)τ i

γ
5q(~r2, t)q̄(~r3, t)τ j

γ
5q(~r4, t)

×h(~r1−~r2)h(~r3−~r4)
(2.4)

where q and q̄ are isodoublet quark fields and h(~r) is smearing function.
There are four types of ππ scattering diagrams that contribute to the Greens functions con-

structed from the π iπ j operator defined in Eq. (2.4). The ππ , I = 0 and I = 2 correlators are linear
combinations of these four diagrams in the following ways:

〈ππ(t)ππ(0)〉I=2 = 2D−2C

〈ππ(t)ππ(0)〉I=0 = 2D+C−6R+3V
(2.5)
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There are also four types of diagrams involved in ππ/σ Green’s functions that are shown in
Figure 2. The I=0 scattering, ππ/σ correlators are linear combinations of these four diagrams in
the following ways:

〈σ(t)σ(0)〉= 1
2

Vσσ −
1
2

Cσσ

〈σ(t)ππ(0)〉=
√

6
4
·Vσππ −

√
6

2
·Cσππ

(2.6)

C : R :

D :
V :

Figure 1: Four types of diagrams which contribute to ππ scattering Green’s functions constructed from the
π iπ j operator defined in Eq. (2.4). The two vertices on the left represent the two source pions and the two
vertices on the right correspond to two sink pions.

Vσσ : Cσσ :

Vσππ : Cσππ :

Figure 2: Four types of diagrams contribute to ππ/σ correlator. The large vertex represent σ operator

With GPBC, pion operator carries momentum of (±π/L,±π/L,±π/L). Since we are inter-
ested in ππ scattering with a specific angular momentum, we need to evaluate a superposition
of ππ states to obtain an angular momentum eigenstate. Since our lattice with GPBC has cu-
bic symmetry at the meson level, we first calculate ππ correlators with 64 specific momentum
combinations(that is, 8 choices for both source and sink operators), and project them to the A1
representation to obtain an S-wave correlator, and to the T2 representation to obtain a D-wave cor-
relator. The σ operator carries zero momentum. We generated 8 different kinds of σ operator by
constructing quark/anti-quark products with eight different relative momentum, and then averaged
them to make an operator which is more rotational symmetric and used that as the σ operator.

After we calculated the lattice correlator, we performed a fit to determine the lattice energy.
The fitting details will be explained in the next section. We then use Lüscher’s formula[7] to convert
lattice energy into a scattering phase shift, and compare it with the dispersion relation prediction. In
this proceeding, we compare our lattice calculation result with Schenk’s parametrization formula[8]
and using the parameters of Colangelo et al [9].

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
2
7
6

Studies of I=0 and I=2 ππ scattering with physical pion mass Tianle Wang

3. Analysis and result

3.1 I=2 scattering

For I=2 scattering, we don’t have the vacuum term, and from equation (2.1) we can see that the
correlator has two terms: a constant term plus a cosh function. The effective mass plot in Figure
3 shows that there is a plateau starting from t=6. So we perform a correlated fit with the fitting
function

C(t) = A · (e−Et + e−E·(Lt−2·tsep−t))+C (3.1)

with 3 parameters A(amplitude), E(energy) and C(around the world constant). We choose the fit
range as (6-25) since the plateau in effective mass plot starts at t = 6. The results based on 216
configurations (old) and 1386 configurations (new) are summarized in table 1. It is clear that our

Figure 3: Left: effective mass plot for I=2 ππ correlator; right: effective mass plot for I=0 ππ correlator.

S-wave phase shift agrees perfectly with the dispersive predictions, also consistent with multi-state
fitting result(not listed here), and the agreement between D-wave energy and twice the pion energy
is also consistent with the expectation that the D-wave phase shift is small. The huge reduction in
statistical error of energy is consistent with the 1/

√
N prediction since we increased the number of

configurations by a factor of 2.52. This suggests one single operator is sufficient for us to obtain
the ππ I=2 ground state energy, considering the relatively large a−1 error.

3.2 I=0 scattering: Single operator results

In I=0 scattering, the vacuum term shows up, so before we start fitting, we perform a vacuum
subtraction. This means we explicitly calculate the fourth term in equation (2.1) and subtract that
from our correlator. After performing the vacuum subtraction, we repeat the same procedure we
applied to the ππ I=2. The effective mass plot in Figure 3 shows the relatively large increase in
the error as the time increases compared with I=2, which is the consequence of the large statistical
error in vacuum term. Since there is a plateau starting from t=6, we perform a correlated fit with
the fitting function

C(t) = A · (e−Et + e−E·(Lt−2·tsep−t))+C (3.2)

with 3 parameters A(amplitude), E(energy) and C(around the world constant), and we choose the
fit range as (6-25). The results based on 216 configurations (old) and 1386 configuration (new) are
summarized in table 2.
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E(MeV)(Old) δ (Old) E(MeV)(New) δ (New)

S-wave 573.2(0.6)(2.8) -11.0(0.3) 573.9(0.2)(2.8) -11.3(0.1)
Dispersion 574.1 -11.4 574.1 -11.4

2Eπ 549.2(0.8)(2.8) 549.0(0.3)(2.8)

D-wave 549.4(0.4)(2.8) 549.9(0.2)(2.8)

Table 1: The ππ I=2 scattering results, χ2/do f is 1.6 with the old data and 1.3 with the new data. The first
error in the energy is statistical error and the second comes from propagating the inverse lattice spacing error,
the error in phase shift is statistical error. Eπ is the energy of pion with GPBC, so it differs from pion mass.
The quantity labeled ’dispersion’ is the prediction for the finite-volume ππ energy obtained by combining
Lüscher’s formula and the Schenk parameterization

E(MeV)(Old) δ (Old) E(MeV)(New) δ (New)

S-wave 498(11)(3) 23.8(5.2) 508(5)(3) 19.1(2.3)
Dispersion 474.6 35.0 474.6 35.0

2Eπ 549.2(0.8)(2.8) 549.0(0.3)(2.8)

D-wave 548.6(0.9)(2.8) 548.1(0.4)(2.8)

Table 2: The ππ I=0 scattering results, χ2/do f is 1.5 with old data and 1.6 with new data. The definition of
the errors is the same as in Table 1. These results were obtained from the correlator of a single I=0 operator.

In this table, we can see the inconsistency between our calculation and the dispersive predic-
tion: the phase shift we calculated is 3σ different from dispersive predictions for our old data, and
after including more statistics, the discrepancy increases to 5σ . One possible reason is excited state
contamination, so we performed a two state (cosh) fit to our data, but the ground state energy we
find is the same as the one state fit energy. We conclude that the statistical error at large time have
made it impossible to use a single operator to detect the nearby excited state identified below using
two operators.

3.3 I=0 scattering: Two operator results

In order to control the excited state contamination, we included another operator, the σ oper-
ator, and we performed a correlated two-state simultaneous fit to the ππ/σ 2×2 Green’s function
using the fitting function

Ci j = Ai0 ·A j0 · (e−m0t + e−m0(Lt−t))+Ai1 ·A j1 · (e−m1t + e−m1(Lt−t)) (3.3)

where i,j can be the ππ or σ operator. We choose the fitting range to be (5-10). This gives results
that are consistent with results from nearby ranges, and have good statistics and χ2. The results
are listed in table 3. Also we compare that result with the one from a GEVP[10] analysis. Now
we can see the fitting result, the GEVP result and the dispersive prediction are all consistent with
each other. That means adding the new σ operator allows us to distinguish the ground state from
the excited state. By comparing this result with the previous single operator result, we can see that
the introduction of the second operator also reduces the statistical error of the ground state energy.
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E0(MeV) δ

sim-fit(5-10) 483.1(1.4)(2.7) 31.0(0.7)(3.0)
GEVP: t = 6, t0 = 3 475.6(2.6)(2.7) 34.7(1.2)(3.0)

Dispersion 474.6 35.0

Table 3: The ππ I=0 simultaneous fit results, χ2/do f is 1.7. The definition of the errors is the same as in
Table 1. The second error in phase shift is systematic error from excited state contamination. The results are
from analysing the 2×2 ππ/σ Green’s function.

The ability of these two operators to distinguish the ground and excited states can be seen directly
by computing the determinant of the 2× 2 correlation matrix. At t=6 we obtain a determinant of
(1.9±0.4)×1016, a quantity that would be zero if only one state were present.

4. Conclusion and outlook

We have described our lattice calculation of the ππ I=2 and I=0 scattering phase shifts at the
kaon mass with a physical pion mass. For the I=2 channel, by using a single ππ operator, we obtain
a phase shift which is consistent with the dispersive predictions. For I=0 channel, one single ππ

operator can not distinguish the ground state and the first excited state. However when we add a σ

operator, we are able to remove the excited state contamination.
At this moment we are ready to include a third operator[11], a ππ operator with larger

relative ππ momentum, to help further suppress the excited state contamination in both the I=0
and I=2 calculation. By constructing a ππ operator from two all-to-all pion "mesonfields" with
momenta that are not opposite but with a non-zero sum makes a moving frame calculation
possible. By introducing this third operator, we are looking forward to seeing a similar
suppression of excited state contamination in such a moving frame calculation.
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