
P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
2
8
4

2018 Update on εK with lattice QCD inputs

Jon A. Bailey, Sunkyu Lee, Weonjong Lee*

Lattice Gauge Theory Research Center, CTP, and FPRD,
Department of Physics and Astronomy,
Seoul National University, Seoul 08826, South Korea
E-mail: wlee@snu.ac.kr

Yong-Chull Jang

Physics Department, Brookhaven National Laboratory, Upton, NY11973, USA

Jaehoon Leem

School of Physics, Korea Institute for Advanced Study (KIAS), Seoul 02455, South Korea

Sungwoo Park

Los Alamos National Laboratory, Theoretical Division T-2, Los Alamos, NM87545, USA

SWME Collaboration

We present updated results for εK determined directly from the standard model (SM) with lattice
QCD inputs such as B̂K , |Vcb|, |Vus|, ξ0, ξ2, ξLD, FK , and mc. We find that the standard model with
exclusive |Vcb| and other lattice QCD inputs describes only 70% of the experimental value of |εK |
and does not explain its remaining 30%, which leads to a strong tension in |εK | at the 4σ level
between the SM theory and experiment. We also find that this tension disappears when we use
the inclusive value of |Vcb| obtained using the heavy quark expansion based on QCD sum rules.

The 36th Annual International Symposium on Lattice Field Theory - LATTICE2018
22-28 July, 2018
Michigan State University, East Lansing, Michigan, USA.

*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:wlee@snu.ac.kr


P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
2
8
4
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channel value Ref.
B→ D∗`ν̄ 39.05(47)(58) [5, 6]
B→ D`ν̄ 39.18(94)(36) [5, 7]
|Vub|/|Vcb| 0.080(4)(4) [5, 8]
ex-combined 39.13(59) [5]

(a) Results for exclusive |Vcb|.

channel value Ref.
kinetic scheme 42.19(78) [5]
1S scheme 41.98(45) [5]
in-combined 42.03(39) [1]

(b) Results for inclusive |Vcb|.
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Table 1: |Vcb|: (a) exclusive |Vcb|, (b) inclusive |Vcb|, and (c) |Vcb| versus |Vub|.

1. Introduction

This paper is a brief summary of our previous paper [1]. This paper is also an update of our
previous papers [2, 3, 4].

2. Input parameters: |Vcb| and ξ0

In Table 1, we present updated results for both exclusive |Vcb| and inclusive |Vcb|. Recently,
HFLAV reported them in Ref. [5]. The results for exclusive |Vcb| are obtained using lattice QCD
results for the semileptonic form factors of Refs. [6, 7, 8]. Here, we use the combined results
(ex-combined) for exclusive |Vcb| and the results of the 1S scheme for inclusive |Vcb| to evaluate
εK . For more details on |Vcb| and the related caveats, refer to Ref. [1].

The absorptive part of long distance effects on εK is parametrized into ξ0.

ξ0 =
ImA0

ReA0
, ξ2 =

ImA2

ReA2
, Re

(
ε ′

ε

)
=

ω√
2|εK |

(ξ2−ξ0) . (2.1)

There are two independent methods to determine ξ0 in lattice QCD: one is the indirect method
and the other is the direct method. In the indirect method, one can determine ξ0 using Eq. (2.1)
with lattice QCD input ξ2 and with experimental results for ε ′/ε , εK , and ω . In the direct method,
one can determine ξ0 directly using lattice QCD results for ImA0 combined with experimental
results for ReA0. In Table 2 (a), we summarize results for ξ0 calculated by RBC-UKQCD using
the indirect and direct methods. Here, we use the results of the indirect method for ξ0 to evaluate
εK .

In Ref. [9], RBC-UKQCD also reported the S-wave scattering phase shift for the I = 0 channel:
δ0 = 23.8(49)(12), which is different from those of the dispersion relations [10, 11] by ≈ 3σ . In
Ref. [12], they have accumulated higher statistics to obtain δ0 = 19.1(25)(12), which is about 5σ

different from those of the dispersion analyses. They introduce a σ operator and make all possible
combinations with the σ and π−π operators. Then, RBC-UKQCD has obtained δ0 = 32.8(12)(30)

1
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method ξ0 Ref.

indirect −1.63(19)×10−4 [13]

direct −0.57(49)×10−4 [9]

(a) ξ0

Collaboration δ0 Ref.

RBC-UKQCD-15 23.8(49)(12)◦ [9]

RBC-UKQCD-18 32.8(12)(30)◦ [12]

KPY-2011 39.1(6)◦ [11]

CGL-2001 39.2(15)◦ [10, 14]

(b) Results for δ0
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Table 2: The absorptive long distance effect ξ0 and S-wave I = 0 scattering phase shift δ0.

WP CKMfitter UTfit AOF
λ 0.22509(29) [16] 0.22497(69) [17] 0.2248(6) [18]
ρ̄ 0.1598(76) [16] 0.153(13) [17] 0.146(22) [19]
η̄ 0.3499(63) [16] 0.343(11) [17] 0.333(16) [19]

(a) Wolfenstein parameters

Input Value Ref.
ηcc 1.72(27) [3]
ηtt 0.5765(65) [20]
ηct 0.496(47) [21]

(b) ηi j

Table 3: (a) Wolfenstein parameters and (b) QCD corrections: ηi j with i, j = c, t.

which is consistent with those of the dispersion relations. These results are presented in Table 2 (b)
and Figure 2 (c).

3. Input parameters: Wolfenstein parameters, B̂K , ξLD, and others

In Table 3 (a), we summarize the Wolfenstein parameters on the market. The CKMfitter and
UTfit collaboration provide the Wolfenstein parameters determined by the global unitarity triangle
(UT) fit. Unfortunately, εK , B̂K , and |Vcb| are used as inputs to the global UT fit, which leads to
unwanted correlation with εK . We want to avoid this correlation, and so take another input set from
the angle-only fit (AOF) suggested in Ref. [15]. The AOF does not use εK , B̂K , and |Vcb| as input
to determine the UT apex (ρ̄, η̄). Here the λ parameter is determined from |Vus| which is obtained
from the K`2 and K`3 decays using lattice QCD results for the form factors and decay constants.
The A parameter is determined from |Vcb|.

In the FLAG review [22], they present lattice QCD results for B̂K with N f = 2, N f = 2+ 1,
and N f = 2+1+1. Here, we use the results for B̂K with N f = 2+1, which is obtained by taking
a global average over the four data points from BMW 11 [23], Laiho 11 [24], RBC-UKQCD 14
[25], and SWME 15 [26]. In Table 4 (a), we present the FLAG 17 result for B̂K with N f = 2+ 1,
which is used to evaluate εK .

The dispersive long distance (LD) effect is defined as

ξLD =
m′LD√
2∆MK

, m′LD =−Im

[
P ∑

C

〈K0|Hw|C〉〈C|Hw|K0〉
mK0−EC

]
(3.1)
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Collaboration Ref. B̂K

SWME 15 [26] 0.735(5)(36)

RBC/UKQCD 14 [25] 0.7499(24)(150)

Laiho 11 [24] 0.7628(38)(205)

BMW 11 [23] 0.7727(81)(84)

FLAG 17 [22] 0.7625(97)

(a) B̂K

Input Value Ref.
GF 1.1663787(6)×10−5 GeV−2 [18]
MW 80.385(15) GeV [18]

mc(mc) 1.2733(76) GeV [27]
mt(mt) 163.65(105)(17) GeV [1]

θ 43.52(5)◦ [18]
mK0 497.611(13) MeV [18]
∆MK 3.484(6)×10−12 MeV [18]
FK 155.6(4) MeV [18]

(b) Other parameters

Table 4: (a) Results for B̂K and (b) other input parameters.

If the CPT invariance is well respected, the overall contribution of the ξLD to εK is about ±2%.
Lattice QCD tools to calculate ξLD are well established in Refs. [28, 29, 30]. In addition, there

have been a number of attempts to calculate ξLD on the lattice [31, 32]. In them, RBC-UKQCD
used a pion mass of 329 MeV and a kaon mass of 591 MeV, and so the energy of the 2 pion
and 3 pion states are heavier than the kaon mass. Hence, the sign of the denominator in Eq. 3.1
is opposite to that of the physical contribution. Therefore, this work belongs to the category of
exploratory study rather than to that of precision measurement.

In Ref. [33], they use chiral perturbation theory to estimate the size of ξLD and claim that

ξLD =−0.4(3)× ξ0√
2

(3.2)

where we use the indirect results for ξ0 and its error. Here, we call this method the BGI estimate
for ξLD. In Refs. [28, 34], RBC-UKQCD provides another estimate for ξLD:

ξLD = (0±1.6)%. (3.3)

Here, we call this method the RBC-UKQCD estimate for ξLD.
In Table 3 (b), we present higher order QCD corrections: ηi j with i, j = t,c. In Table 4 (b),

we present other input parameters needed to evaluate εK . Since Lattice 2017, three parameters:
mt(mt), mK0 , FK have been updated. The mt(mt) parameter is the scale-invariant (SI) top quark
mass renormalized in the MS scheme. The pole mass of top quarks comes from Ref. [18]: Mt =

173.5±1.1 GeV. We convert the top quark pole mass into the SI top quark mass using the four-loop
perturbation formula. For more details, refer to Ref. [1].

4. Results for εK

In Fig. 1, we present results for |εK | evaluated directly from the standard model (SM) with
lattice QCD inputs given in the previous sections. In Fig. 1 (a), the blue curve represents the
theoretical evaluation of |εK | using the FLAG-2017 B̂K , AOF for Wolfenstein parameters, and
exclusive |Vcb|, and the RBC-UKQCD estimate for ξLD. The red curve in Fig. 1 represents the
experimental value of |εK |. In Fig. 1 (b), the blue curve represents the same as in Fig. 1 (a) except
for using the inclusive |Vcb|.
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(a) Exclusive |Vcb|
1.5 2 2.5 3
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(b) Inclusive |Vcb|

Figure 1: |εK | with (a) exclusive |Vcb| (left) and (b) inclusive |Vcb| (right) in units of 1.0×10−3.

Our results for |εK | are summarized in Table 5. Here, the superscript SM means that it is
obtained directly from the standard model, the subscript excl (incl) means that it is obtained using
exclusive (inclusive) |Vcb|, and the superscript Exp represents the experimental value. Results in
Table 5 (a) are obtained using the RBC-UKQCD estimate for ξLD and those in Table 5 (b) are
obtained using the BGI estimate for ξLD. In Table 5 (a), we find that the theoretical evaluation of
|εK | with lattice QCD inputs (with exclusive |Vcb|) |εK |SM

excl has 4.2σ tension with the experimental
result |εK |Exp, while there is no tension with inclusive |Vcb| (heavy quark expansion with QCD sum
rules).

parameter method value
|εK |SM

excl exclusive |Vcb| 1.570±0.156
|εK |SM

incl inclusive |Vcb| 2.035±0.178
|εK |Exp experiment 2.228±0.011

(a) RBC-UKQCD estimate for ξLD

parameter method value
|εK |SM

excl exclusive |Vcb| 1.615±0.158
|εK |SM

incl inclusive |Vcb| 2.079±0.178
|εK |Exp experiment 2.228±0.011

(b) BGI estimate for ξLD

Table 5: |εK | in units of 1.0×10−3.

In Fig. 2 (a), we plot the ∆εK ≡ |εK |Exp−|εK |SM
excl in units of σ (the total error) as a function

of time starting from 2012. In 2012, ∆εK was 2.5σ , but now it is 4.2σ . In Fig. 2 (b), we plot the
history of the average ∆εK and the error σ∆εK . We find that the average has increased with some
fluctuations by 27% during the period of 2012-2018, and its error has decreased monotonically by
25% in the same period.

In Table 6 (a), we present the error budget for |εK |SM
excl. Here, we find that the largest error

comes from |Vcb|. Hence, it is essential to reduce the error in |Vcb| significantly.
In Table 6 (b), we present how the values of ∆εK have changed from 2015 [3] to 2018 [1].

Here, we find that the positive shift of ∆εK is about the same for the inclusive and exclusive |Vcb|.
This reflects the changes in other parameters since 2015.
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Figure 2: Time history of (a) ∆εK/σ , and (b) ∆εK and σ∆εK .

source error (%) memo
|Vcb| 31.4 ex-combined

η̄ 26.8 AOF
ηct 21.5 c− t Box
ηcc 9.1 c− c Box

...
...

...

(a) Error budget for |εK |SM
excl

year Inclusive |Vcb| Exclusive |Vcb|
2015 0.33σ 3.4σ

2018 1.1σ 4.2σ

(b) Results for ∆εK .

Table 6: Error budget for |εK |SM
excl and history of ∆εK
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