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BSM kaon mixing at the physical point Julia Kettle

1. Introduction

In the standard model kaon mixing has been recognised as an important area of study since
the discovery of CP violation in the Ks regeneration experiment by Christenson et al. It is directly
related to εk the degree of indirect CP violation within the standard model.

Kaon mixing is a flavour changing neutral current (FCNC) process, occuring at one-loop. The
process is dominated by box-diagrams, such as figure 1, mediated by the neutral W boson.
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Figure 1: W exchange box diagram

The long-distance matrix element 〈K̄0|Ô1|K0〉, where Ô1 is the effective four quark weak
operator mediating the ∆S = 2 transition in the SM, can be separated out from the short-distance
wilson coefficients, by an operator product expansion (OPE). The calculation of the matrix element
can be done with lattice QCD and has been the subject of many studies. It is now known to a
high level of precision, as summarised in the FLAG report[1]. Beyond the standard model, other
matrix elements with differing Dirac structures are allowed. We can construct a weak effective
Hamiltonian of the possible operators:

H ∆S=2 =
5

∑
i=1

Ci(µ)Oi(µ)+
3

∑
i=1

C̃i(µ)Õi(µ). (1.1)

In our framework, where parity is conserved, the Õ are redundant, therefore we only need to study
the five operators Oi. In our framework we are interested only in the parity-even operators. In the
so-called SUSY basis introduced in [2], the parity-even operators are,

O1 = (s̄aγµ(1− γ5)da)(s̄bγµ(1− γ5)db)

O2 = (s̄a(1− γ5)da)(s̄b(1− γ5)db)

O3 = (s̄a(1− γ5)db)(s̄b(1− γ5)da)

O4 = (s̄a(1− γ5)da)(s̄b(1+ γ5)db)

O5 = (s̄a(1− γ5)db)(s̄b(1+ γ5)da).

(1.2)

There have been lattice studies of BSM kaon mixing by ETM[3], SWME[4] and RBC-UKQCD[5].
We parametrise the BSM matrix elements as a ratio over the the SM matrix elements. Follow-

ing [6], we define ratio parameters

Ri

(
m2

P

f 2
P
,a2,µ

)
=

[
f 2
K

m2
K

]
Exp.

[
m2

P

f 2
P

〈P̄|Oi(µ)|P〉
〈P̄|O1(µ)|P〉

]
Lat.

(1.3)

where mP and fP are the mass and decay constant of the pseudoscalar meson on the lattice. The
term in mP/ fP is included to control the behaviour at the chiral limit, but at the physical point this
parameterisation reduces to a direct ratio of the BSM to SM matrix element.
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2. Simulation

We use RBC-UKQCD’s N f = 2+1 gauge ensembles with the Iwasaki gauge action [7, 8] and
the domain wall fermion (DWF) action of either Möbius (M) [9, 10, 11] or Shamir (S) [12] kernel.
In our previous study of BSM kaon mixing [5] there were only 2 lattice spacings and no data with
physical pion masses. This work improves upon our previous work by including a third lattice
spacing [13]. The pion masses span from the physical, on two new ensembles, up to 430 MeV. We
use Z2 Gaussian wall (Z2GW) sources with smearing for all ensembles save C1(2) which are Z2
wall (Z2W) sources. A summary of simulation parameters is given in table 1.

Table 1: Summary of the ensembles used in this work. C, M and F stand for coarse, medium and
fine, respectively. M and S stand for Möbius and Shamir kernels, respectively.

name L/a T/a kernel source a−1[GeV] mπ [MeV] ncon f igs amuni
l amsea

s amval
s amphys

s

C0 48 96 M Z2GW 1.7295(38) 139 90 0.00078 0.0362 0.0358 0.03580(16)
C1 24 64 S Z2W 1.7848(50) 340 100 0.005 0.04 0.03224 0.03224(18)
C2 24 64 S Z2W 1.7848(50) 430 101 0.01 0.04 0.03224 0.03224(18)
M0 64 128 M Z2GW 2.3586(70) 139 82 0.000678 0.02661 0.0254 0.02539(17)
M1 32 64 S Z2GW 2.3833(86) 303 83 0.004 0.03 0.02477 0.02477(18)
M2 32 64 S Z2GW 2.3833(86) 360 76 0.006 0.03 0.02477 0.02477(18)
M3 32 64 S Z2GW 2.3833(86) 410 81 0.008 0.03 0.02477 0.02477(18)
F1 48 96 M Z2GW 2.774(10) 234 98 0.002144 0.02144 0.02132 0.02132(17)

We extract the ratio parameters and pseudoscalar masses and decay constants with a ground
state fit of the three-point and two-point correlation functions respectively. For the two-point cor-
relation functions we simultaneously fit combinations of pseudoscalar and axial current channels.
We show some examples of the correlation functions fits in figure 2.

0 10 20 30 40

t/a

0.275

0.280

0.285

0.290

0.295

0.300

a
m

sl

fit result

PPSS(t)

AASS(t)

PASL(t)

AASL(t)

5 10 15 20 25

t/a

8.70

8.65

8.60

8.55

8.50

8.45

8.40

R
5

fit result

R5 (t)

Figure 2: Examples of the correlator fits. On the left is a simultaneous fit of multiple channels
of the two-point correlation function (for ensemble C0) to the ground-state to extract the effective
mass. On the right is a fit of the ratio of a BSM to SM three-point correlation function for M0.

3. Renormalisation

The renormalisation is performed using the non-perturbative Rome-Southampton method [14]
with non-exceptional kinematics [15] (RI-SMOM). We can then convert our results to the more
useful MS scheme using the one-loop perturbative matching as given in [16].

Oi(µ)
MS = RMS←RI−SMOM(µ) lim

a→0
[ZRI−SMOM

i j (µ,a)〈O j(a)〉]. (3.1)
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BSM kaon mixing at the physical point Julia Kettle

The scale is defined by the momenta and should fall within the Rome-Southampton window;
Λ2

QCD� µ2� (π/a)2. The upper limit is given by the lattice cut-off and the lower limit ensures
accurate perturbative matching to MS. We use non-exceptional momenta (p2

1 = p2
2 = (p1− p2)

2

and p1 6= p2) so that the infrared effects are more suppressed [17]. In this work, two schemes,
(γµ ,γµ) and (/q,/q), are used, they are distinguished by their projectors. Definitions and further de-
tails can be found in [16]. The renormalisation is calculated on a small subset of configurations
and results for C1/2 and M1/2/3 are given in [16]. The renormalisation factors for C0, M0 and F1
will be published in a forthcoming paper.

We perform the renormalisation at 2GeV and 3GeV, both of which fall within the Rome-
Southampton window. The higher scale however is more susceptible to isation effects, particularly
on the coarser lattices, while the lower scale will have a larger error in the perturbative matching.
We can scale an operator renormalised at one scale to another using a scale evolution matrix:

σ(µ1,µ2) = lim
a2→0

Z(µ1,a)Z−1(µ2,a). (3.2)

In this way we renormalise at 2GeV where the discretisation effects are small, and use the scale-
evolution matrix, calculated on only the medium and fine ensembles, to scale our results to 3GeV
where the perturbative matching has a smaller error.

4. Extrapolation

We perform a simultaneous chiral continuum extrapolation according to the global fit form,

Y
(

a2,
m2

ll

f 2
ll

)
= Y

(
0,

m2
π

f 2
π

,0
)[

1+αia2 +βi
m2

ll

f 2
ll

]
, (4.1)

linear in a2 and in m2
ll/ f 2

ll . The lattice spacings were determined in a global fit [18] (which was
updated in [13] to include F1) including some of the same ensembles as in this work. Hence there
is a small correlation. However, the error on the lattice spacings is of order 0.5% and the largest
discretisation effect seen in any of the data points is of order 15% or less, leading to an effect of
order 0.01%. Thus we neglect this effect. We perform the fit using a χ2 minimisation, where the
χ2 is calculated using only the error in y-axis. The gradient of the fit (scaled by the error in the
mass or lattice spacing) is small compared to the ratio parameter error in both cases. Therefore the
difference in our values of χ2 from those we would obtain including the errors in the pion mass
and lattice spacing is negligible.

5. Results

In figure 3 we show the fits of the ratio parameters at 2GeV in the intermediate renormalisation
scheme SMOM(γµ ,γµ ).

We present our final results in MS at 3GeV after being renormalised in RI-SMOM(γ,γ) at
2GeV, step-scaled [19] to 3GeV and matched to MS. We present a full error budget in table 2. The
statistical error is small typically of order 1%. Our fit ansatz does not follow chiral perturbation
theory, and is instead linear in m2

ll/ f 2
ll . We also perform fits according to χPT , in which the fit form

differs only in the inclusion of a logarithmic term. By comparing the difference between the results
from the linear and chiral ansatz we are able to estimate the error arising from the the global fitting
of the mass dependence. This is labelled as "Chiral." in table 2.
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Figure 3: The chiral extrapolation of the ratio parameters, renormalised in SMOM(γ,γ) at 2GeV,
is shown. The results were gained from a combined chiral continuum fit and the data points have
been corrected to the continuum using the parameters gained from the fit.

Given the inclusion of the third lattice spacing the continuum extrapolation is well controlled.
This inclusion of the third lattice spacing, of course necessitates understanding the mass depen-
dence in a global fit. We have had no prior evidence of higher order lattice artefacts in our light
hadron physics, suggesting that hadronic quantities display modest scaling violations. However we
expect there may be discretisation errors arising from the hard off shell renormalisation, since the
scale of these is set by a momentum deliberately chosen to lie in the Rome Southampton pertur-
bative window. with no observation of higher order lattice artefacts. By choosing to renormalise
at 2GeV and step-scale to 3GeV using a scale-evolution matrix determined excluding the coarse
lattice, we expect to have minimised the effect of discretisation errors. We compare the step-scaled
results used for our central values and the results renormalised directly at 3GeV to provide an
estimate of the magnitude of the discretisation effects. These are labelled in table 2 as "Discr.".

We estimate that the dominant source of systematic error in our results is in fact the pertur-
bative matching at one loop to MS arising from the truncation in the series. We expect, in the
continuum limit, the final result to be independent from the intermediate renormalisation scheme
if matching is performed to all orders. Since, we have results in two renormalisation schemes
(ÎşÎij , ÎşÎij ) and (q/,q/), which should differ only in the truncation of the perturbative series in the
matching, we can use these to assess perturbative error in the extrapolated continuum value after
our global fit. We take the difference between the results as an estimate of the magnitude of the
perturbative matching error. This is labelled as "P.T.". This is the largest source of error, but for the
ratios it is still of order 3

4
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Table 2: Central values and error budget for our final results renormalised at µ = 2GeV, step-scaled
to, and converted to MS at, 3GeV. For our results converted to MS our central value is obtained
using SMOM(γµ ,γµ ) as the intermediate scheme.

scheme R2 R3 R4 R5

MS← SMOM(γµ ,γµ )

central -18.83 5.815 41.58 10.814
Stat. 0.90% 1.08% 0.89% 0.82%

Chiral. 0.90% 0.94% 1.65% 1.61%
Discr 0.85% 0.67% 1.55% 1.99%
P.T. 2.78% 1.32% 2.47% 2.89%

Total. 3.04% 1.75% 3.35% 3.86%

Table 3: Comparison of the results of this work in MS(µ = 3GeV) alongside our collaboration’s
previous results presented in [5].

RBC-UKQCD16[5] This Work
N f = 2+1 2+1

scheme RI-SMOM RI-SMOM
R2 -19.48(44)(52) -18.83(17)(55)
R3 6.08(15)(23) 5.815(63)(125)
R4 43.11(89)(230) 41.58(37)(119)
R5 10.99(20)(88) 10.81(9)(37)

6. Conclusions

In this work we have improved upon our previous calculation of the BSM kaon mixing ratio
parameters by including a third lattice spacing, and data directly at the physical point. The results
we have gained are consistent with our previous work, as shown in table 3, and have two-fold
reduced statistical errors. We have calculated the full error budget including systematic errors. For
all the ratio parameters these are either of the same order as in the previous work or have been
reduced, as we have a better controlled continuum and chiral extrapolation given the inclusion
of fine lattice and physical pion mass data. The precision gained here is sufficiently high that to
make meaningful gains any further work on this topic should consider isospin breaking effects
and calculate the two-loop matching coefficients (a computation is already underway, see talk by
Kvedaraite at this conference). Earlier stages of this were presented in previous Lattice conferences
[20]. These results will be published in full, alongside the bag parameters and the matrix elements,
in a forthcoming paper.
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