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1. Introduction

Non-abelian gauge theories are an important class of field theories with quantum chromody-
namics (QCD) being one of the most prominent examples. Most properties of such gauge theories
are determined by the gauge group (SU(3) for QCD) and the (light) fermion content, in QCD two
fundamental Dirac flavors (up and down quarks). Varying the gauge group, the representation of
the fermions, or the number of flavor changes the properties of such systems.

Studying such systems as function of the fermionic degrees of freedom is of particular interest.
Based on perturbative calculations, we expect that an SU(3) gauge system with fundamental flavors
changes its nature from confining to conformal to infrared (IR) free as we increase the number of
flavors. This change reflects how the gauge coupling g depends on the energy scale µ and can be
encoded in the β -function

β (g) =
∂g2

∂ log(µ)
. (1.1)

For an asymptotically free system, like QCD, the β -function is negative and exhibits only the trivial,
Gaussian fixed point at g = 0 where the gauge coupling is relevant. At large N f where the system
is IR free, the gauge coupling is irrelevant at the Gaussian fixed point (FP) and the β -function is
entirely positive. In between is a range where the system exhibits conformal properties. Like a con-
fining system, the β -function is negative at small g but later develops a second zero, corresponding
to a conformal or IR fixed point. Near the lower onset of the conformal window this second fixed
point occurs at strong gauge couplings, demanding non-perturbative calculations for reliable iden-
tification or confirmation. Establishing the lowest number of flavors exhibiting a conformal fixed
point is important because many composite Higgs models are based on near-conformal systems.
Theories just below the conformal window are expected to have near-conformal properties (e.g. a
“walking” gauge coupling) which are desired for building models which describe certain scenarios
for physics beyond the Standard Model (SM).

Here we focus on the SU(3) gauge theory with twelve fundamental flavors and study its β -
function numerically using lattice field theory simulations. Perturbative calculations at 2-, 3-, and
4-loop level predict a conformal fixed point, though the 5-loop MS result suggest that the IRFP, if it
exists, is outside the range of convergence of perturbation theory. There are several nonperturbative
lattice calculations that explore the infrared properties of this system [1–9]. To date, however, these
results have led to different conclusions whether the SU(3) gauge system with N f = 12 fundamental
flavors is indeed conformal, even predictions for the renormalized β -function are inconsistent over
a wide range of the coupling g.

Trying to shed light on these discrepancies, we report updates on our numerical determination
of the N f = 12 β -function [7, 9]. Our determination is based on the gradient flow (GF) step scaling
function [10, 11] that closely follows the negative of the continuum β -function

β
c
s (g

2
c ;L) =

g2
c(sL)−g2

c(L)
log(s2)

, (1.2)

with s = 2. The finite volume, tree-level normalized GF coupling

g2
c(L) =

128π2

3(N2
c −1)

1
C(c,L)

t2〈E(t)〉 (1.3)
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Figure 1: Non-perturbatively determined GF step-scaling function with infinite volume limit extrapolation
for the renormalization schemes c = 0.3 (left) and c = 0.25 (right). Colored data points are obtained using
Eq. (1.2) for the tree-level normalized (n) couplings determined with Zeuthen flow (Z) and Symanzik op-
erator (S). Colored bands correspond to the polynomial interpolation for each volume pair, while the solid
black line with gray error band shows the linear infinite volume extrapolation and the gray dashed-dotted
line shows the quadratic extrapolation.

is defined at flow time
√

8t = cL where c specifies the renormalization scheme and C(c,L) is
the tree-level normalization factor introduced in [12]. We calculate the step scaling functions on
dynamical gauge field ensembles generated using stout-smeared Möbius domain wall fermions
(MDWF) and Symanzik gauge action [13–17]. Using Grid [18, 19] we generate gauge field
ensembles with L4 volumes and anti-periodic boundary conditions in all four dimensions at zero
quark mass (m f = 0) for L4 = 8, 10, 12, 14, 16, 20, 24, 28, and 32. Simulations are carried out
using values of the bare coupling β = 6/g2 for β = 7.00, 6.50, 6.00, 5.50, 5.20, 5.00, 4.80, 4.70,
4.60, 4.50, 4.40, 4.30, 4.25, and 4.20 on all nine volumes.

Domain wall fermions (DWF) are formulated by adding a fifth dimension, Ls, and the 4d chiral
modes are then projected onto the walls. DWF exhibit chiral symmetry which however gets slightly
broken due to finite extent of the fifth dimension. The residual chiral symmetry breaking can be
parametrized by an additive mass term, mres. When increasing the strength of the coupling, it is well
known that the residual chiral symmetry breaking grows. We measure mres numerically and keep
the residual chiral symmetry breaking under control and mres below 10−5 by increasing Ls from 12
to up to 24 for simulations at strong couplings (β ≤ 4.30). The advantage of using expensive DWF
compared to other formulations like, e.g. Kogut-Susskind fermions [20], is that DWF preserve, even
at finite gauge coupling, the full SU(N f )×SU(N f ) flavor symmetry. Moreover, the effective gauge
term generated by the fermions and the smearing is very small, mostly absorbed by the Pauli-Villars
regulator of DWF. This leads to reduced cut-off effects and increases the region where perturbative
improvements are applicable. It is interesting to note that the expectation value of the plaquette
normalized to 1, a good measure of the UV fluctuations of the gauge fields, is above 0.6 even at the
strongest coupling in our DWF simulations. We complement the good properties of domain wall
fermions by using a fully O(a2) improved set-up: Symanzik gauge action, Zeuthen flow [21], and
Symanzik improved operator. Remaining discretization artifacts are further reduced by using the
tree-level normalization in the definition of the gauge coupling (1.3) [12].

Our updated results are shown in Fig. 1 using tree-level normalized (n) couplings obtained
from Zeuthen flow (Z) using the Symanzik operator (S) for renormalization schemes c = 0.3 (left)
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and c = 0.25 (right). The continuum limit L→ ∞ step scaling function has a rather strong depen-
dence on the parameter c. In the rest of this paper we will concentrate on c = 0.3. Compared to
our original analysis [7, 9], we have added a fifth volume pair (14→ 28) and increased statistics
on many ensembles to have at least 3500 thermalized MDTU per ensemble. Further, we have re-
vised our analysis strategy. For each volume pair, we obtain the tree-level normalized step scaling
function (Eq. (1.2)) shown by the colored data points in Fig. 1. Next we interpolate these values
in g2

c using a third order polynomial and draw the result using dashed lines with shaded error band
in the same color as the data points. Because discretization errors of our data are extremely small
and practically disappear for weak couplings, we constraint the intercept of the interpolation to
vanish at g2

c = 0.1 In a second step, these interpolated step scaling functions are extrapolated to
the continuum L→ ∞ limit using either a quadratic ansatz in 1/L2 for all five volume pairs (gray
dash-dotted line) or a linear ansatz extrapolating the three largest volume pairs shown by the solid
black line with gray error band. Since we are calculating a renormalized quantity and extrapolate
the GF step scaling function to the continuum L→ ∞ limit, we obtain a result which is expected
to agree when compared to other determinations using the same renormalization scheme and is
independent e.g. of the fermion discretization.

In the next section we will present further details of our analysis, scrutinize it, and demonstrate
the robustness of our findings. In Section 3 we will address implications of our results, comment
on the question of fermion universality before giving an outlook on ongoing and future work.

2. Details of our gradient flow step scaling analysis
As stated above, our preferred analysis is based on tree-level normalized couplings determined

using Zeuthen flow and the Symanzik operator. Choosing the renormalization scheme c = 0.3, we
investigate other choices of our analysis.

In Fig. 2 we present alternative determinations of the step scaling function using tree-level nor-
malized Wilson flow (W) with Wilson operator (W) (left) and Symanzik flow with clover operator
(C) (right). Comparison with the left plot in Fig. 1 shows that while the data points for individual
volume pairs change quite substantially, in particular for SC, the continuum L→ ∞ extrapolated
result shows only minimal fluctuations, as can be seen in the comparison plot (Fig. 4, left panel).

Next we demonstrate the effect of the tree-level normalization by showing in Fig. 3 the analysis
without perturbative improvement. On the left, data obtained from Zeuthen flow and Symanzik
operator are analyzed; on the right, Symanzik flow and clover operator are used. As can be seen by
comparison to the left plot in Fig. 1 and the right plot in Fig. 2, the difference between the different
volume pairs grows. This is a sign that tree-level normalization effectively reduces discretization
effects and helps to improve the quality of the infinite volume extrapolation. We do not observe the
breakdown of tree-level normalization reported in [22] and attribute this to the substantially smaller
cut-off effects observed with DWF. Despite discretization effects becoming significant without tree-
level normalization, the continuum extrapolated results are still in agreement within 1σ statistical
uncertainty with our preferred analysis as shown in the left panel of Fig. 4.

Finally, we present details on the L→ ∞ extrapolations. In Fig. 5 we show for selected values
of the squared renormalized gauge coupling, g2

c , the extrapolations carried out by either using a
1Theoretically this is only expected in the continuum limit; practically we cannot resolve a non-zero intercept for

any of our volume pairs. Removing this constraint does not change any of the results presented here.
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Figure 2: Alternative determinations of the GF step scaling function applying tree-level normalization (n)
to couplings determined using Wilson flow (W) with the Wilson operator (W) on the left or Symanzik flow
(S) with the clover operator (C) on the right.
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Figure 3: GF step scaling function analyzed for ZS (left) and SC (right) without using the perturbative tree-
level normalization. In both cases we removed the constraint on the intercept of the polynomial interpolation.
Discretization effects for SC are large, forcing more than three times the range of the y-axis.

linear fit ansatz to extrapolate the data points on the three largest volume pairs or an ansatz including
an additional quadratic term in 1/L2 to fit data points from all five volume pairs. To demonstrate
the smallness of the discretization effects in our preferred analysis based on tree-level normalized
coupling obtained from Zeuthen flow with Symanzik operator, we also show the extrapolation
without improvement using Symanzik flow and clover operator. Although the range of values in
the extrapolation is quite different, the extrapolated results agree giving further credit to our data.

3. Summary

In Fig. 1 we presented our updated analysis of the GF step scaling using up to five different
volume pairs and volumes up to L4 = 32 to improve the continuum L→∞ limit extrapolation. Our
analysis uses MDWF preserving the full SU(N f )× SU(N f ) symmetry and a full O(a2) improved
lattice set-up. Extrapolating the renormalized coupling to the continuum limit, we obtain a result
which is expected to be independent of lattice discretizations and therefore supposed to agree with
other determinations (for the same renormalization scheme c) over the entire range of g2

c and not
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Figure 4: Left: comparison of continuum extrapolated GF step scaling functions obtained with or without
tree-level normalization and different flows or operators. All shown curves overlap indicating agreement
within 1σ statistical uncertainties. Right: comparison of our nZS result to perturbative prediction and the
result based on a calculation with staggered fermions [6].
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Figure 5: Continuum L→ ∞ extrapolations at selected values of the coupling g2
c . The smallness of dis-

cretization effects in our preferred nZS analysis is seen by comparison to SC data. Although SC data spread
over a much larger range, both determinations agree in the continuum, a sign of the quality of our data/set-up.

only at the IRFP.
Comparing our result to the one presented in Ref. [6] in the right panel of Fig. 4 or noting that

Ref. [8] finds a basically constant β -function around 0.13 for c = 0.25 and g2
c > 6, we observe a

stark discrepancy between our result and calculations using staggered fermions. Further investiga-
tions are required to identify the source of the disagreement whether e.g. universality of fermion
formulations is violated in conformal systems or whether systematic effects significantly alter the
outcome. Discretization uncertainties might push the system out of the basin of attraction of the
FP, resulting in different fermion formulations leading to different results.

In either case implications might be significant for numerical investigations of conformal or
near-conformal systems in the realm of beyond the SM physics. Due to the lower numerical costs,
staggered fermions have been the preferred choice for beyond the SM studies (see e.g. [23–27]).
To investigate possible scaling violation effects, we started a spectral study of a near-conformal
systems using MDWF [28]. In parallel we continue our step-scaling calculations for SU(3) systems
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with N f = 12 or 10 fundamental flavors with the aim to push to even stronger couplings and/or
improve the continuum extrapolation. Preliminary data for N f = 12 indicate an IRFP around g2

c = 6
for c = 0.25 as is already suggestive in the left plot of Fig. 1.
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