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1. Introduction

In this work we consider the “inclusive” decay of the B meson. This means summing over
all possible final states with a particular weight factor. To be specific, we consider the semilep-
tonic decay of a B meson to a charm quark c and a lepton pair `ν . The optical theorem can be
schematically written as

∑
Xc=D, D∗, ···

|A(B→ Xc`ν)|2 = ImA(B→ Xc`ν → B), (1.1)

where the right-hand side really refers to the forward-scattering matrix element

Tµν(v ·q,q2) = i
∫

d4xe−iqx 1
2MB
〈B(v)|T

{
J†

µ(x)Jν(0)
}
|B(v)〉. (1.2)

Here, the initial B meson momentum is specified by MBvµ , and qµ is the momentum transfer to the
lepton pair. Jµ stands for the weak current that induces the decay. The matrix element is a function
of two invariant kinematical variables v · q and q2. The inclusive decay rate is described by this
matrix element, and the question is whether one can calculate this quantity using the techniques of
lattice QCD.

It is not straightforward to apply lattice methods, however, especially in the kinematical region
where the decay actually occurs. This is because the lattice theory is formulated in the Euclidean
space and no imaginary part of the amplitude appears in the kinematical region accessible on the
lattice. The strategy proposed by [1] is to use analytic continuation, or equivalently Cauchy’s
integral

T (v ·q) =
∫ (v·q)max

−∞

d(v ·q′)
π

ImT (v ·q′)
v ·q′− v ·q

. (1.3)

This relates the imaginary part corresponding to the physical decay amplitude to a value of T (v ·q)
at an unphysical kinematical region where the real decay does not occur, and thus no imaginary
part develops.

At fixed q2, the upper limit of the physical cut on v · q is given by (v · q)max = (M2
B + q2−

M2
D)/2MB. The cut continues down to negative infinity, while the real decay occurs only in the

region v ·q > 0. There is another cut due to an unphysical process b→ bbc̄ starting from ((2MB +

1
2MB

(M2
B +q2−m2

X)
1

2MB
((2MB +MX)

2−q2−M2
B)

v ·q

Figure 1: Analytic structure of the structure function T (v · q,q2) in the complex plane of v · q. The cuts
are shown by thick lines. The cut on the left corresponds to the physical decay of b→ c, while the other
represents an unphysical process b→ c̄bb.
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Figure 2: Correlation function CJJ
µν(t;q) plotted as a function of t1. The other current t2 is set at t2 = 26.

Data for the AA channel (circles) and for the VV channel (squares) both in the spatial direction µν = 11.
The points below t1 = t2 represent the physical decay while those above are unphysical (b→ bbc̄). The data
at β = 4.35 (1/a' 3.6 GeV) and mb = (1.25)4mc are shown.

MD)
2−q2−M2

B)/2MB. The analytic structure of T (v ·q) in the complex plane of v ·q is shown in
Figure 1. The cuts where the imaginary part appears are shown by thick lines. The formula (1.3)
only refers to an integral over the physical cut; a contribution from the other (unphysical) process
exists and it should be possible to separately identify each contribution in the lattice calculation
and in the continuum analytical calculation.

2. Lattice calculation

The method to calculate the matrix element T (v · q,q2) is described in [1]. It reduces to a
calculation of the four-point function corresponding to the matrix element

CJJ
µν(t;q) =

∫
d3xeiq·x 1

2MB
〈B(0)|J†

µ(x, t)Jν(0)|B(0)〉, (2.1)

which is different from Tµν(v ·q,q2) defined in (1.2) as it does not include the Fourier transform in
the t direction. We use the standard sequential source method to calculate the four-point function.

The correlator CJJ
µν(t;q) for the case of zero spatial momentum insertion (q = 0) is shown as a

function of t1 (t = t2−t1 and t2 = 26) in Figure 2. The currents J are spatial axial-vector Ak (circles)
or spatial vector Vk (squares). The lattice data are obtained with Möbius domain-wall fermions for
both sea and valence quarks. We take an example obtained at an inverse lattice spacing 3.6 GeV
and pion mass 300 MeV. The charm quark mass is tuned to the physical value and the bottom quark
mass is mb = (1.25)4mc, which is lower than the physical value. The same set of ensembles is also
used for the studies of B→D(∗)`ν form factors [2] and B→ π`ν form factors [3]. We use the code
set Iroiro++ for the numerical calculations [4].

Going to the left from the point t1 = t2, we observe an exponential fall-off essentially due to the
charm quark propagating between the two currents. This corresponds to the physical decay mode of

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
3
0
7

Inclusive decay structure function for B→ Xc`ν Shoji Hashimoto

B→ Xc. At large time separations, the correlation function is dominated by the ground state, which
is the D or D∗ meson depending on the channel. In the zero-recoil limit, the temporal channel V †

0 V0

is saturated by D (0−), while the spatial channel A†
kAk (k = 1, circles) is well described by D∗ (1−).

At short distances, on the other hand, the correlation function contains contributions from excited
states including Dπ , Dππ , ... etc., which can be seen as a departure from the exponential fall-off.
It does not seem to be very significant in this particular case.

The plot in Figure 2 also shows the wrong parity channel V †
k Vk (k = 1, squares), which is two

orders of magnitude smaller than A†
kAk. This corresponds to the decays to the states of 1+, which

is likely one of the P-wave states D∗∗.
On the other side (t1 > t2) we can see a steeper exponential decay corresponding to the un-

physical process B→ bbc̄.
We finally perform the “Fourier transform” (or Laplace transform) in the time direction as

T JJ
µν(ω,q) =

∫
∞

0
dteωtCJJ

µν(t;q) (2.2)

to obtain the matrix element at an unphysical kinematical point pX = (ω,−q), q = (MB−ω,q).
When CJJ

µν(t;q) is saturated by the ground state, e−m
D(∗) t , the integral gives a pole 1/(mD(∗) −ω),

which represents the propagator of the D(∗) meson.
Figure 3 shows the result of the integral as a function of ω = MB−q0. (A derivative of T (v ·q)

in terms of ω is shown to avoid the ultraviolet divergence.) The variable ω plays the role of the
energy injected to the final charmed hadron states. If we assume saturation by the ground state, the
amplitude may be written in terms of the corresponding form factors. In the zero-recoil limit, they
are defined by

〈D(0)|V0|B(0)〉= 2
√

MBMDh+(1), 〈D∗(0)|Ak|B(0)〉= 2
√

MBMDhA1(1)ε
∗
k , (2.3)

and the structure functions are given as

TVV
00 (ω,0) =

|h+(1)|2

MD−ω
, T AA

kk (ω,0) =
|hA1(1)|2

MD∗−ω
. (2.4)

The zero-recoil form factors h+(1) and hA1(1) are normalized to unity in the heavy quark limit.
The correction due to finite mb and mc makes them different from 1, and our results are roughly
consistent with the known values [5] as well as with the mass dependence studied in [6, 7].

The wrong-parity channel can also be estimated assuming the saturation by the lowest-lying
states, which are the P-wave states of spin-parity 1+: D1 (2,421 MeV) and D∗1 (2,427 MeV). Using
the estimates of [8] for the corresponding form factors gV1(1) and fV1(1), we draw the dashed curve
in Figure 3 (bottom panel). It is not perfectly consistent with the lattice data, but explains the size
of the contribution fairly well.

3. Comparison with heavy quark expansion

In the region of ω away from the hadronic poles, such as the D or D∗ meson poles, the heavy
quark expansion is applicable. The motion of the b quark inside the initial B meson may be taken
into account by the heavy quark expansion [9, 10].
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Figure 3: Structure functions dT JJ
11 /dω for both JJ = A†

kAk (circles) and V †
k Vk (squares) channels. The

top panel depicts the contributions from the physical (black and red) and unphysical (gray and orange)
amplitudes. The bottom panel magnifies the contribution of the wrong parity channel, where only the wrong
parity channel (red) is visible other than the unphysical contribution (gray).

A comparison of the lattice data with the estimates within heavy quark expansion is shown in
Figure 4. Here, a derivative of T33(ω) with respect to ω is plotted; the perturbative calculation is
valid away from the hadronic resonances, i.e. in the small ω region. In this plot, the perturbative re-
sults (still at the tree level) are without (dashed curves) and with (solid curves) the 1/m2

b corrections
are shown. At the order of 1/m2

b, two hadronic parameters appear: µ2
G = 1

2MB
〈B|Q̄ i

2 σµνGµνQ|B〉
and µ2

π = 1
2MB
〈B|Q̄(i~D)2Q|B〉. The spin-magnetic term µ2

G is well determined by the experimental
data for the B-B∗ splitting while the kinetic term µ2

π is not very accurately known. Here we take
two representative values: µ2

π = 0 (thin curves) and 0.5 GeV2 (thick curves). The 1/m3
b correction

is also known (black curve) but only for the sum of vector and axial vector channels [11].

Agreement between the lattice data and the heavy quark expansion is improved by adding
the 1/m2

b corrections especially when we choose µ2
π = 0.5 GeV2 but a significant deviation is still

visible. Of course, higher order corrections of order αs and α2
s are necessary for more serious

comparison. A calculation of the corresponding perturbative coefficients is underway. They may
be obtained by performing Cauchy’s integral starting from the existing one-loop calculation of the
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Figure 4: Lattice results for dT33/dω for the vector channel (red) and axial-vector channel (blue) are com-
pared with the corresponding estimates from heavy quark expansion. The estimates at the leading order
(dashed) and the 1/m2

b order (solid) are shown.

b→ c`ν differential decay rate [12, 13], but one needs to be careful because the contour integral
runs toward unphysical kinematical regions where extra cuts show up. Such studies should then be
extended to include the 1/m2

b terms, for which the one-loop calculation is available for the physical
kinematics [14].

4. Discussions

This work presents our on-going effort to compare the lattice calculation of the structure func-
tion relevant to inclusive B meson decays to the corresponding estimate within heavy quark expan-
sion. The goal would be to provide another test of the perturbative expansion applied for B decays
and to extract the hadronic parameters, such as µ2

π , without recourse to fitting to the experimental
data.

The idea to calculate the matrix elements relevant to inclusive processes may be applied to
other processes. An interesting example is the `N scattering (see [15]). This is typically studied
in the high energy region (hence the terminology, “deep” inelastic scattering), but the formula-
tion itself is also valid in the low-energy region, which would be a main application of the lattice
calculation.
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