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We port Domain-Decomposed-alpha-AMG solver to the K computer. The system has 8 cores and
16 GB memory per node, of which theoretical peak is 128 GFlops (82,944 nodes in total). Its
feature, as many as 256 registers per core and as large as 0.5 byte/Flop ratio, requires a different
tuning from other machines. In order to use more registers, we change some of the data structure
and rewrite matrix-vector operations with intrinsics. The performance is improved by more than
a factor two for twelve solves including the setup. The efficiency is still about 5% after the
optimization, which is lower than a previously tuned mixed precision solver for the K computer,
22%. The throughput is, however, more than two times better for a physical point configuration.
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1. Introduction

The performance bottle neck of lattice QCD simulations is linear solvers for the Dirac equa-
tions in most cases. Liner solvers are used both in generating configuration with HMC algorithm
and in measuring physical observables which contain fermion propagators. As the system becomes
closer to the continuum limit and the fermion mass becomes lighter, the Dirac operator becomes
singular because the smallest eigenvalue in magnitude approaches zero (in lattice unit). The com-
putational cost for the iterative solvers diverges, known as a critical slowing down. Depending on
the algorithm of the iterative solver, one even may not obtain the convergent result with the state of
arts configurations of which pion mass is (nearly) physical point. Therefore it is very important to
accelerate the solvers to make the simulations as close as the real world to suppress the systematic
uncertainties: the light quark mass is as light as the physical quark, the lattice volume is large and
the lattice spacing is small.

One of great progress in accelerating the solver in the last decade is the application of multigrid
algorithm [1, 2]. The multigrid solver can drastically reduce the above mentioned critical slowing
down. Since QCD is a gauge theory, naive geometric multigrid methods do not work. A combina-
tion of aggregation based algebraic multigrid and an adaptive setup, which is often called adaptive
multigrid, is the right way. It is in fact a hybrid of the geometric and algebraic method. The domain
decomposed aggregation is a geometrical blocking procedure, and the procedure to build a coarse
grid operator by using (low mode) vectors is exactly the algebraic method. The key feature of the
algorithm is the adaptive setup to make the vectors we have just mentioned. It allows us to build
a coarse grid operator which captures the low mode space of the original fine grid operator very
efficiently. Therefore the solution from the coarse grid solver provides a good approximation to
the low mode part of the whole system. The high mode part is solved on the fine grid (smoother).
A combination of these two solvers can be used as a preconditionor of any iterative outer solvers.
One of the merits of the multigrid method is that it is fast even with small quark mass. Another
merit is that the coarse grid solver can recursively have a coarse grid which can further accelerate
the solver. A demerit is that the adaptive setup requires a significant computational cost.

The adaptive multigrid algorithm for QCD was first applied to Wilson [2] and Clover fermions
[3]. It is then applied to Domainwall fermions [4] and recently to staggered fermions [5]. Depend-
ing on the choice of solvers at each step, there are variations of the algorithm. In this work, we
focus on the DDαAMG algorithm for clover fermions [6]. It uses a domain decomposed solver for
the smoother process and is rather close to the domain decomposed inexact deflation algorithm [7].
The DDαAMG is also used as a preconditionor for overlap fermion [8], and is extended to twisted
mass fermion [9]. An implementation of adaptive multigrid solvers on GPU with QUDA is also
available [10]. Another implementation for many core SIMD machines with GRID is presented in
this conference [11].

2. Algorithm

We follow the implementation DDalphaAMG available at https://github.com/DDalphaAMG,
which we refer the original code in the following. The algorithm is an adaptive aggregation based
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domain decomposed algebraic multigrid method [6]. In this work, we restrict ourselves on the
2-level method.

Here is a sketch of the algorithm. The multigrid process is used as a preconditionor for the
outer iterative solver. Before running the solver, we first prepare test vectors (also called null-space
vectors) |λi〉 (i = 1, ...,n; n ∼ 20), which are rich in low mode of the Dirac operator. They are
generated with an (iterative) adaptive method. The first set of |λi〉 is generated by applying an
approximate solver on random vectors. Once the initial set is ready, we can iteratively repeat the
following two steps, 1. build a multigrid preconditionor M (see below) with the current |λi〉, 2. apply
(a part of) the multigrid solver to |λi〉 and obtain updated |λi〉 with the low mode contamination
enhance. The updated set of |λi〉 is used in the next iteration. The number of the iterations is a
tunable parameter and we use 4 times iteration throughout in this work. Having prepared the test
vectors, we project them onto a given domain X and chirality s,

|λi(X ,s =±)〉 ≡

{
1±γ5

2 |λi〉 in domain X ,

0 otherwise.
(2.1)

They are used to build a coarse grid operator Dcoarse from the fine grid Dirac operator D as

D→ Dcoarse(X ,s, i;Y, t, j) = 〈λi(X ,s)|D|λ j(Y, t)〉. (2.2)

Here the domain X plays a role of lattice site on the coarse grid, the lattice sites in the domain are
mapped to a single site on the coarse grid (Fig. 1). The chirality s is the “spin” and the label i is
the “color” degrees of freedom on the coarse grid so that we have a 2n component vector on each
coarse site X for the quark field. The effective gauge link which connects neighboring sites on the
coarse grid is a 2n× 2n matrix, which in fact has both “spin” and “color” degrees of freedom. A
2n× 2n matrix on the coarse site X , Dcoarse(X ,s, i;X , t, j), is “clover” term. The projection of the
source vector |b〉 (restriction R) and prolongation of the solution vector xcoarse on the coarse grid
(P) are defined as

R : |b〉 → bcoarse(X ,s, i) = 〈λi(X ,s)|b〉, (2.3)

P : xcoarse(X ,s, i)→ |x〉= ∑
X ,s,i

xcoarse(X ,s, i)|λi(X ,s)〉. (2.4)

To reduce the errors in the high mode, we use another solver called smoother, D−1
smoother. We use a

post smoother only. The preconditionor matrix M is in the end

M = PD−1
coarseR+D−1

smoother(1−DPD−1
coarseR). (2.5)

We need three solvers in total: the outer solver, the smoother D−1
smoother, and the coarse grid

solver D−1
coarse. The outer solver of the DDalphaAMG is Flexible GMRES. The smoother is a

multiplicative Schwartz Alternating Procedure (SAP), for which the inner solver in the domain is an
site even-odd preconditioned Minimal Residual solver with fixed number of iteration. The coarse
grid solver is an even-odd preconditioned GMRES solver, of which the convergence condition for
the residual vector is 5×10−2. As emphasized in [6], the SAP efficiently reduces the errors of the
high mode of the Dirac operator while the coarse grid solver reduces the errors of the low mode.
In total, errors from both high and low modes are reduced efficiently in the multigrid steps.
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12 d.o.f/site 2n d.o.f/site

R−−−−→
P←−−−−

Figure 1: Mapping from a fine grid lattice (left) to a coarse grid lattice (right). The fine lattice sites in a
domain is mapped to a single coarse lattice site. Here, the degrees of freedom (d.o.f) is for a fermion field
and n is the number of the test vectors.

3. K computer and Details of the Tuning

The target system for performance tuning is the K computer at the Center for Computational
Science, RIKEN (R-CCS). The system is available since 2012 but is still one of the leading HPC
machines in Japan. It is the 3rd in the latest (June, 2018) HPCG ranking and was the first until one
before (November, 2017). The CPU is the SPARK64 VIIIfx processor equipped with 8 cores, of
which theoretical peak performance is 128 GFlops. Each node consists of one processor and 16
GB memory, and the inter-node network is the Tofu interconnection. The system has 82,944 nodes
in total and the total theoretical peak performance is about 10 PFlops. The key features of the K
computer for performance tuning are:

• as many as 256 registers/core, which are 128-bit wide

• double precision SIMD arithmetics are available (no single precision)

• relatively large (0.5 byte/FLOP) byte-per-flop ratio

Since the processor does not have single precision SIMD arithmetics, a 128-bit wide SIMD register
can not treat 4 single precision numbers but only 2 double precision numbers, i.e., 1 complex
number in double precision. Still, however, using single precision numbers can save the memory
bandwidth and can accelerate the computation.

For the fine grid operator, we rewrite the hopping terms and multiplication of the clover term
with intrinsics. The data structure for the (inverse) clover term is also modified to make use of its
hermitian property. The original code stores the inverse of the clover term as an LU decomposition,
but our code stores the whole inverse as a hermitian matrix as follow. In the chiral representation,
we have 2 hermitian matrices of which size is 6×6. We modify the code to store the matrix with
a minimal data size: 6 real and 15 complex numbers instead of 36 complex numbers for a 6× 6
hermitian matrix. Since we have enough number of registers, all of the 6 real and 15 complex
numbers together with input and output vectors, both are made of 6 complex numbers, are stored
on the registers simultaneously. These changes of the treatment of the (inverse) clover term has the
biggest impact to the performance in our tuning.
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The coarse grid operator multiplication consists of mainly matrix-vector multiplications —
2n× 2n matrix for the effective gauge links and the “clover” terms. We use 4× 4 tiling in these
matrix-vector multiplications, which are implemented with intrinsics. The 4 component vector in
the tiling has 2-component “spin” and 2-component “color” degrees of freedom. Because of this
implementation, the number of the test vectors, which is the total number of the “color”, must be
even. We could use a larger tiling size which would accelerate the performance more, but would
reduce flexibility on the choice of the size of the coarse grid operator, or would require a more
complicated implementation to treat the data which does not fit in the tile.

Our performance tuning is implemented only up to 2-level multigrid method. The original
code also has an SSE optimized version but we started with the unoptimized version. The code is
available at https://github.com/i-kanamori/DDalphaAMG/tree/K/.

4. Benchmark Results

We use a single PACS configuration at almost physical pion mass mπ ' 146MeV on a 964

lattice generated on the K computer [12]. The strange quark mass is set to the physical value. We
use 1024 nodes and the local lattice volume is 12×12×12×24. The timings for 12 solves together
with the setup time for a light quark and a strange quark are plotted in Fig. 2.

In the figure, we also put the result with the same solver as used in [12] for comparison (de-
noted as “baseline”). It is a mixed precision nested BiCGstab, where the single precision solver
uses domain decomposition with block size 12× 12× 12× 12 and NSAP = 5. The solver inside
the domain uses SSOR method with sub-blocking. Eight threads coming from 8 cores parallelize
inside the domain. This is a well-tuned solver on the K computer: its efficiency is about 22%1.

For both the original and the tuned version of DDalphaAMG, we use 4×4×4×4 block size
and NSAP = 4 for the SAP iterations. The number of the test vectors is 16. With this setting, the
local lattice size on the fine grid 12×12×12×24 becomes 3×3×3×6 on the coarse grid, and the
degrees of freedom on the site change from 12 to 32. Inside the domain is not thread parallelized
but the loops over domains are parallelized.

Let us focus on the timing for the light quark first. The 12 solves without the setup stage by
the original code (green one in the figure) spend almost the same time as the baseline (red one).
The efficiency is, however, much lower: only 3.0%. That is, the performance with inefficient code
with the multigrid algorithm is competing with the well tuned code. Including the setup (pale
green part), the multigrid solver is slower at this stage. After the performance tuning, which is
plotted with blue color in the figure, the elapsed time becomes about the half of the baseline. The
efficiency of the tuned code is 5.3%. To obtain a further improvement of the efficiency, we would
need a drastic change of the code. For the strange quark, the baseline code is fast enough. The
overhead for making coarse grid operator etc. is not compensated, even after the tuning. Here, we
use the same test vectors as the light quark so that we can save the cost for the setup but the coarse
grid operator must be reconstructed. The “new kappa” in the plot (pale colors) is the timing needed
to reconstruct the coarse grid operator with a hopping parameter for the strange quark, κs.

1The performance in this proceedings are measured by the hardware counter, of which run contains contractions for
meson spectroscopy and data I/O. The theoretical value of the efficiency is about 10–20% lower than the values cited
here.
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Figure 3 shows the residual norm against the theoretical counting of FLOPs for the light quark.
We set the same scale for the both panels to see how fast the multigrid solver is. For the baseline
(left panel), the residual norms from both the inner single precision solver and the outer solver are
plotted. The counting is 42 MFLOP/site (504 FLOP/site for 12 solves). For the tuned version of the
DDalphaAMG (right panel), FLOPs for the setup stage are plotted as well. It takes 6.7 MFLOP/site
for the setup and 4.3 MFLOP/site for a solve (58.3 MFLOP/site for 1 setup and 12 solves). For the
solving itself, the tuned version of DDalphaAMG is about 10 times faster. This is consistent with
the timing and efficiency, DDalphaAMG is 2.5 times faster in the timing but 4 times slower in the
efficiency.
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Figure 2: Timing of the solvers for light quark (left panel) and strange quark (right panel). The baseline (red)
is a well-tuned existing solver for the K computer [12], AMG (green) is the DDalphaAMG and AMG:tuned
(blue) is this work after a performance tuning of DDalphaAMG.

1x10
-16

1x10
-14

1x10
-12

1x10
-10

1x10
-8

1x10
-6

0.0001

0.01

1

 0  5  10  15  20  25  30  35  40

MFLOP/site

relative |residual vector| of FBiCSstab solver

total
single prec. solver

1x10
-16

1x10
-14

1x10
-12

1x10
-10

1x10
-8

1x10
-6

0.0001

0.01

1

 0  5  10  15  20  25  30  35  40

MFLOP/site

relative |residual vector| of DDalphaAMG solver

setup
solve

Figure 3: The relative residual norm against the theoretical FLOP counting for a light quark, with the
baseline solver from [12] (left panel) and tuned DDalphaAMG (right panel). For the former, the residual
norm by both inner single precision solver (green solid) and the outer solver (red dashed) are plotted. The
target tolerance is 10−14.

5. Summary

We ported the implementation of DDαAMG solver (DDalphaAMG) for clover fermions to the
K computer and improved the performance. The efficiency is still 4 times lower than a well-tuned
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existing solver for the target machine but the throughput is 2 times better for 12 solves including the
setup stage for almost physical light quarks. The theoretical FLOP counting showed the multigrid
method requires 10 times less FLOP in the solving stage. For the strange quark, the multigrid
solver is slower than the well-tuned one without multigrid method.
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