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1. Introduction

While the excited meson spectrum has been explored extensively, the study of the baryon
spectrum is more limited, and the most extensive studies have focused on anistropic lattices[1, 2],
where the spatial and temporal lattice spacings are different. Nevertheless, these works, using
three-quark interpolating operators, have provided important insights into the nature of the excited
spectrum: a counting of states at least as rich as that of the quark model, and richer than that of
a straightforward point-like diquark/quark picture, and strong indications of additional positive-
parity states beyond those of the quark model that are “hybrid” in nature, where gluonic degrees of
freedom play an essential role [1].

Despite the advantage of the anisotropic formulation, notably in enabling a finer resolution
of the correlation functions, it carries disadvantages, most notably the more complicated opera-
tor renormalization needed both for hadron structure, and for the transition matrix elements to
excited states. In this work, we study the use of an isotropic action for determining the low-
lying positive-parity baryon spectrum, and compare with the earlier, anisotropic studies; a study of
nucleon charges using the same ensemble and computational framework, namely distillation [3],
appears elsewhere [4]. In particular, we explore the calculation of the positive-parity nucleon and
delta masses with somewhat lighter quark masses, at a finer spatial lattice spacing, thus probing
the robustness of spin identification and that of identifying hybrid baryons. Finally, we explore the
sensitivity of our calculation to the rank of the distillation basis.

2. Computational Strategy & Lattice Parameters

We are interested in the low-lying regions of the spectra, so interpolators are chosen in such a
way that they yield the correlators that have been found to have a large overlap with the low-lying,
positive-parity spectrum. Most of the interpolators are constructed with only the upper components
of the Dirac spinor, in the Dirac basis; they are referred to as non-relativistic operators, with the
derivatives acting as the orbital angular momentum between the quarks. There is further class of
interpolators formed from the commutation of two gauge-covariant derivatives acting on the same
quark field; such operators correspond to the chromomagetic components of the gluonic field-
strength tensor and are referred to as “hybrid” operators.

As the calculations are done on discretized lattice, the baryons with higher total angular mo-
menta J, are subduced from continuous Hilbert space into discrete lattice irreps. containing multiple
J. As a result, we have multiple interpolators corresponding to the same continuum operator for the
cases of higher total angular momenta, with those interpolators lying in different lattice irreps. The
numbers of interpolators used in our calculation are listed in Table 1.

The operators created directly from the fields of the lattice lagrangian have significant overlap
with all energies of the spectrum making the extraction of the lightest elements of the spectrum
difficult. To address this problem, a linear operator is applied on the quark fields on appropriate
time-slices and operators are built from those “smeared” fields. In this work, the smearing method
used is known as Distillation [3]. The distillation operator on time-slice is defined as:

�xy(t) =
ND

∑
k=1

ν
(k)
x (t) ν

(k)†
y (t) ⇒ �(t)≡VD(t) ⊗V †

D(t) (2.1)
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J irrep. (dim) No of Interpolators (∆) No of Interpolators (N)
1
2 G1(2) 3 7
3
2 H(4) 5 7
5
2 G2(2)⊕H(4) 2 + 2 4 + 4
7
2 G1(2)⊕G2(2)⊕H(4) 1 + 1 + 1 1 + 1 + 1

Table 1: Baryons of total angular momenta subduced into lattice irreps.

where v(k)x (t) are eigenvectors of the three-dimensional Laplacian on times slice t, ordered by the
size of the corresponding eigenvalue, and ND is the number of eigenvectors used to construct the
distillation operator.

The distillation method enables us to break down the calculation into smaller independent
pieces, namely the construction of the operators and quark propagator, the latter of which can be
reused in other calculations. Secondly, it enables extended operators both at source and sink to
be computed at no additional cost in terms of quark propagator, enabling the full panoply of the
variational method to be employed. Finally, the method performs spatial sums, or momentum
projections, at both the source and sink time-slices, thus increasing the statistical precision signif-
icantly. The method does, however, have a significant drawback; the number of eigevectors ND

needed to determine the low-energy spectrum is anticipated to grow as the spatial volume, while
the cost of constructing the correlators as ' N4

D for the operators considered here. Thus an impor-
tant aim is to make the distillation space sufficiently small that the low-energy spectrum can be
calculated reliably while keeping the computational cost affordable.

We employ a Wilson-Clover fermion action with periodic boundary conditions in space, and
anti-periodic in time, and a tree-level tadpole-improved Symanzik gauge action. We use degenerate
up and down quarks, and a heavier strange quark. To smooth the short distance fluctuations of the
gauge field, we applied “stout” smearing [5] on the gauge field on both spatial links and temporal
ones. We note that an important difference between these lattices and the anisotropic ones is the
use of smearing in the temporal direction, precluding a physical transfer matrix, which may yield
some distortion of the spectrum. The lattice is of extent 323× 64, with lattice spacing a = 0.098
fm using w0 to set the scale, yielding a pion mass of 356 MeV. The ensemble comprises 351
gauge configurations, and the so-called “perambulators” & “elementals” are computed for a total
of ND = 64 eigenvectors from five different times sources tm = 0, 8, 12, 16 and 32. To extract
the energy spectra and the operator overlaps, we use the the variational method [6] which involves
solving a generalized eigenvalue equation (GEV).

3. Results

The general format of the operators is written as,(
BΣF ⊗

(
SPS

)n
ΣS
⊗ D[d]

L, ΣD

)J

where B is the flavor of the particle involved and ΣF is the associated permutational symmetry, S
is the spin of the particle, PS is the parity with ΣS permutational symmetry. There can be multiple
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possible combinations of upper and lower components of Dirac spinors resulting in the same spin,
parity and symmetry, and these are distinguished by the superscript n. The third element is the
derivative factor indicating the number of gauge-covariant derivatives applied to the quark fields by
d with permutational symmetry ΣD. The derivatives are combined to give objects which transforms
invariantly under rotations with angular momentum L.

The operator overlap factors are used to identify the spin of a state [2, 7] . As each interpo-
lator used in the calculation carries an essence of the continuum spin from which it is subduced,
we would expect an interpolator subduced from spin J, to have large overlaps only onto states
corresponding to the same continuum spin J, and we therefore compare the Z-values obtained in-
dependently in each irrep. In Figure 1, the overlaps for different interpolators in the Hg and G2g

Figure 1: Histogram plot of operator overlaps, Z for Delta for irreps. Hg (top), G2g (bottom). Along the
x-axes, the energy levels are given in lattice unit.

irreps. for the case of the Delta are shown in the upper and lower panels respectively. The overlaps
are normalized so that for a given interpolator, the largest value across all the states is equal to
unity, and the numbers along the x axes are the energies of the states in lattice units . The overlaps
corresponding to operators with spins J= 3

2 , J= 5
2 , and from J= 7

2 are shown in blue, red and green,
respectively.

From Table 1, we see that the positive parity states with continuum spin, J= 5
2 subduce onto

Hg & G2g irreps. and for J= 7
2 , the states subduce onto Hg, G1g & G2g irreps. So, we should get

similar overlaps for operators subduced onto the Hg & G2g irreps. for these states. Figure 1 shows
that our expectations are indeed satisfied. In Hg irrep., the states with dominating contributions
from the operators with J= 5

2 and J= 7
2 have the energy within 4% of that corresponding states in

G2g irrep.; we do not show data for the G1g irrep. for reasons of space, but the results are found to
be consistent.

Our calculations show that the method of spin identification exploited in the anisotropic calcu-
lations is equally applicable to our calculation performed on isotropic lattices. Perhaps this is not
surprising, since the spatial lattice spacing is finer, leading to a smaller breaking of the rotational
symmetry that lies at the heart of the spin-identification technique.

We now examine the sensitivity of the calculated spectra to the dimension of the distillation
space. Based on our expectations for volume scaling, we would anticipate the distillation space
for the lattice used in our calculation should be around 225; we get satisfactory results while using
ND = 64. Thus we now try reducing the distillation space further to see how the spectrum changes.
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In Figure 2, the spectra of the Delta particle in Hg irrep. are plotted for different values of ND.

Figure 2: Effect of varying distillation space on Delta spectra in Hg irrep. States with dominant overlap of
hybrid operators are marked by black circles.

Clearly as we reduce the distillation space, the spectrum starts to spread and the energy levels tend
to have more uncertainty. Below ND = 48, the spectrum starts to deteriorate significantly and below
ND = 32, it becomes almost unrecognizable changing the order of the hybrid state. The effects of
reducing distillation space are much more prominent for the higher-excited states. For the lower-
excited states, and for the states identified as “hybrids”, the results are relatively stable, but it is
clear that a larger number of distillation vectors will be necessary to explore the highest states in
the spectrum.

4. Discussion

Our results for the spectra for the positive-parity Delta and Nucleon are shown in Figures 3
and 4 respectively, and compared with the earlier work on an anistropic lattice [1]. In both plots,
the energies are shown in GeV using the lattice spacing as determined in their respective analyses,
and the x-axes denote the spin J= 1

2 ,
3
2 ,

5
2 ,

7
2 , as identified above. For the Delta, in Figure 3, we can

see that the energy spectra are qualitatively similar, with a cluster of energies around 2.2 GeV and
2.3 GeV respectively. As the pion mass decreases, the energy levels get closer to each other and an
overall downward shift of all the energy levels is observed.

In [1], for J= 5
2 and J= 7

2 , a joint fit is done to the principal correlators corresponding to the
same operator but subduced into different irreps. resulting in only one mass per operator. We do
not perform such a procedure here, but rather quote energy levels in each irrep. separately. Ideally,
the energy levels from the same operator should have the same value, but due to the discretization
effects, they differ from each other. We find that the corresponding energy levels for J= 5

2 and
J= 7

2 have very close values showing the robustness of the method as applied on our relatively finer
isotropic lattice.

In Figure 4, the energy spectrum of the nucleon for pion mass 356 MeV is compared with that
of pion mass 396 MeV. The qualitative behavior is similar to that of the Delta, with the spectrum
compressing and shifting downward as pion mass decreases.
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Figure 3: Energy Spectrum of Delta at Mπ = 356 MeV (left), 396MeV (right). The energy levels corre-
sponding to the same operator but subduced into different irreps. are boxed-in.

Figure 4: Energy Spectrum of Nucleon at Mπ = 356 MeV (left), 396 MeV (right). The energy levels
corresponding to the same operator but subduced into different irreps. are boxed-in.

5. Conclusion & Future Work

The low-lying spectra of baryons extracted here show remarkable resemblance to the previous
calculations employing an anisotropic lattice. Even though the same set of operators were used,
the actions are quite different, notably in the work described here the gauge fields of the action
are smeared not only in the spatial directions but also in the temporal direction, in contrast to the
anisotropic calculation. We are easily able to identify so-called “hybrid” states out of a dense
spectrum of qqq states supporting the robustness of the approach, despite the possibility of mixing
strongly with qqq states of the same JP and the lack of “exotic” quantum numbers that simplify
their identification in the meson sector. We should emphasize, however, that this work is incom-
plete in that only three-quark operators, and not operators expected to couple to scattering states,
are included in the basis. The extension of the calculation to lighter values of the pion mass is
in progress. Our future effort will also include analyzing the energy spectra with non-zero mo-
menta which will in turn be important in exploring the nature of hadron structure and in calculating
quantities like Parton Distribution Functions, Transverse Momentum Dependent Distributions and
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Generalized Parton Distributions. Our approach deals with the single-hadron operators only. Fur-
ther, this is a prerequisite to the inclusion of multi-hadron operators in the basis which will enable
a realistic calculation of the spectrum [8].
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