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1. Introduction

In the seventies, theories with a flat non dynamical background metric and/or implying many
kinds of preferred frame effects became momentarily fashionable and Clifford Will has reviewed
some of them (Rosen theory, Rastall theory, BSLL theory ...) in his book. Because those attempts
were generically roughly conflicting with accurate tests of various versions of the equivalence
principle, the flat non dynamical background metric was progressively given up. The Dark Gravity
(DG) theory we support here is a remarkable exception as it can easily reproduce most predictions
of GR up to Post Newtonian order (as we shall remind in the two following sections) and for
this reason deserves much attention since it might call into question the assumption behind most
modern theoretical avenues: background independence. DG follows from a crucial observation: in
the presence of a flat non dynamical background ηµν , it turns out that the usual gravitational field
gµν has a twin, the "inverse" metric g̃µν . The two being linked by :

g̃µν = ηµρηνσ

[
g−1]ρσ

=
[
η

µρ
η

νσ gρσ

]−1 (1.1)

are just the two faces of a single field (no new degrees of freedom) that we called a Janus field.
The action treating our two faces of the Janus field on the same footing is achieved by simply

adding to the usual action, the similar action with g̃µν in place of gµν everywhere.∫
d4x(
√

gR+
√

g̃R̃)+
∫

d4x(
√

gL+
√

g̃L̃) (1.2)

where R and R̃ are the familiar Ricci scalars respectively built from gµν and g̃µν as usual and L
and L̃ the Lagrangians for respectively SM F type fields propagating along gµν geodesics and F̃
fields propagating along g̃µν geodesics. This theory symmetrizing the roles of gµν and g̃µν is Dark
Gravity (DG) and the field equation satisfied by the Janus field derived from the minimization of
the action is:

√
gη

µσ gσρGρν−
√

g̃η
νσ g̃σρG̃ρµ +µ↔ ν =−8πG(

√
gη

µσ gσρT ρν−
√

g̃η
νσ g̃σρ T̃ ρµ +µ↔ ν)

(1.3)
with T µν and T̃ µν the energy momentum tensors for F and F̃ fields respectively and Gµν and G̃µν

the Einstein tensors (e.g. Gµν = Rµν − 1/2gµνR). We find that, at least about a Minkowskian
background common to the two faces of the Janus field, instabilities are trivially avoided because:

• Fields minimally coupled to the two different sides of the Janus field never meet each other
from the point of view of the other interactions (EM, weak, strong) so stability issues could
only arise in the purely gravitational sector.

• The run away issue is avoided between two masses propagating on gµν and g̃µν respectively,
because those just repel each other, anti-gravitationally as in all other versions of DG theories
rather than one chasing the other ad infinitum.

• The energy of DG gravitational waves vanishes about a common Minkowski background
(DG has a vanishing energy momentum pseudo tensor tµν − t̃µν in this case) avoiding for in-
stance the instability of positive energy matter fields through the emission of negative energy
gravitational waves.
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The theoretical motivations for studying as far as possible a theory such as DG are three-fold:

• Challenge the idea of background independence because DG is the straightforward general-
ization of GR in presence of a background non dynamical metric so either there is no such
background and GR is most likely the fundamental theory of gravity or there is one and DG
is the most obvious candidate for it.

• Bridge the gap between the discrete and the continuous because we here have both the usual
continuous symmetries of GR but also a permutation symmetry which is a discrete symmetry
between the two faces of the Janus field.

• Challenge the standard understanding of time reversal because as we shall see the two faces
of the Janus field are related by a global time reversal symmetry.

2. Global gravity

2.1 The scalar-η cosmological field

We found that an homogeneous and isotropic solution is necessarily spatially flat because the
two sides of the Janus field about our flat Minkowski non dynamical metric are required to satisfy
the same isometries. However, it is also static so that the only way to save cosmology in the DG
framework is to introduce a η-scalar Janus field built from our non dynamical background and
a scalar Φ such that gµν = Φηµν and g̃µν = 1

Φ
ηµν . Then our fundamental cosmological single

equation obtained by requiring the action to be extremal under any variation of Φ(t) = a2(t) is:

aä− ã ¨̃a =
4πG

3
(a4(ρ−3p)− ã4(ρ̃−3 p̃)) (2.1)

where ã(t) = 1
a(t) . With this scalar cosmology we avoid all the normal degrees of freedom of a

metric and corresponding two Friedmann type equations which for a spatial curvature k=0, could
only be satisfied all together by a static solution for any equations of state. An independent other
Janus field is then of course required to describe all other (other than cosmological) aspects of
gravity with all it’s usual degrees of freedom, but then a field forced to remain asymptotically static
to satisfy all the equations. Discussion of the implications and how to unify the two sectors in order
to correctly reproduce results of GR theory of small fluctuations in DG, can be found in [1].

2.2 Cosmology

2.2.1 Continuous evolution and discontinuous permutation

The expansion of our side implies that the dark side of the universe is in contraction. Provided
dark side terms can be neglected, our cosmological equation reduces to a cosmological equation
known to be also valid within GR. For this reason it is straightforward for DG to reproduce the
same scale factor expansion evolution as obtained within the standard LCDM Model at least up to
the redshift of the LCDM Lambda dominated era when something new must have started to drive
the evolution in case we want to avoid a cosmological constant term. The evolution of our side
scale factor before the transition to the accelerated regime is depicted on the left of Figure 1 as a
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function of the conformal time t and the corresponding evolution laws as a function of standard
time t’ are also given in the radiative and cold era. Notice however the new behaviour about t=0
meaning that the Big-Bang singularity is avoided.

A discontinuous transition is a natural possibility within a theory involving truly dynamical
discrete symmetries as is our permutation symmetry in DG. The basic idea is that some of our
beloved differential equations might only be valid piecewise, only valid in the bulk of space-time
domains at the frontier of which new discrete rules apply implying genuine field discontinuities.
Given that our cosmological equation (2.1) is actually invariant under the combined permutations
of densities and scale factors rather than permutation of scale factors alone, we can even specify
two kinds of triggering conditions for a permutation to occur: either (A) a scale factor permutation
can occur at the crossing when we have equal density source terms; or similarly when the scale
factors cross each other (which defines the origin of time), it is the permutation of the densities (B)
which is allowed corresponding to the two metrics exchanging their matter and radiation content.

We thus postulated that a transition (A) occurred billion years ago as a genuine permutation of
the conjugate scale factors, understood to be a discrete transition in time modifying all terms explic-
itly depending on a(t) but not the densities and pressures themselves in our cosmological equation
(2.1). This permutation (at the green point depicted on figure 1) could produce the subsequent
recent acceleration of the universe. This was demonstrated assuming our side source a4(ρ − 3p)
term has been dominant and therefore has driven the evolution up to the transition to acceleration
triggered when ρ − 3p = ρ̃ − 3p̃. Then, following the transition, the dark side source term have
started to drive the evolution: a4(ρ−3p)<< ã4(ρ̃−3p̃) resulting from a(t)<< ã(t).

If the two kind of transitions (A and B) are actually occurring, the solutions then turn out to
satisfy the fundamental relation ã(t) = 1

a(t) = a(−t) and for this reason, we could interpret our
permutation symmetry as a global time reversal symmetry about privileged origin of conformal
time t=0. Moreover B results in the inversion of densities evolution laws i.e from decreasing to
increasing or vice versa, so that the evolution of both densities and scale factors are cyclic as
explained in more details in [1]. For the scale factors to exchange their respective values (A) at the
equality of densities, we just need to jump from t to -t as illustrated in fig 1.

2.2.2 An acceleration scenario

Let’s assume the dark side is also in a cold era at the transition and satisfies ρ̃ − 3 p̃ ≈ ρ̃ =

ρ − 3p ≈ ρ . Then the continuity of the Hubble rate is automatically satisfied. This leads to a
constantly accelerated universe a(t ′)≈ t ′2 in standard coordinate following the transition redshift.

Constraining the age of the universe to be the same as within LCDM the transition redshift can
be predicted and confronted to the measured value ztr = 0.67± 0.1. The prediction is ztr = 0.78
in very good agreement with the measured transition redshift. Another scenario leading to an
exponential acceleration is discussed in [1]. Eventually our framework has a single parameter
replacing the cosmological constant: the redshift of densities equality i.e. the transition redshift ztr.

3. Local gravity: the isotropic case about Minkowski

The isotropic solution in vacuum of the form gµν = (−B,A,A,A) in e.g. dτ2 = −Bdt2 +
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A(dx2 +dy2 +dz2) and g̃µν = (−1/B,1/A,1/A,1/A).

A = e
2MG

r ≈ 1+2
MG

r
+2

M2G2

r2 B =
1
A
=−e

−2MG
r ≈−1+2

MG
r
−2

M2G2

r2 +
4
3

M3G3

r3 (3.1)

is perfectly suited to represent the field generated outside an isotropic source mass M. This solution
is different from the GR one, though in good agreement up to Post-Newtonian order and it involves
no horizon. It also confirms that a positive mass M in the conjugate metric is seen as a negative
mass -M from its gravitational effect felt on our side. The linearized equations about a common
Minkowskian background allow to define the pseudo energy-momentum tensor of the gravitational
field itself which vanishes. However with differing asymptotic values we shall show that DG
approximately reproduces most GR predictions.

4. Differing asymptotic values

Due to expansion on our side and contraction on the dark side the common Minkowskian
asymptotic value of our previous section is actually not a natural assumption. At the contrary a field
assumed to be asymptotically C2ηµν with C constant has its conjugate asymptotically 1/C2ηµν so
their asymptotic values should differ by many orders of magnitude.

Given that gC2η

µν = C2gη

µν and g̃η/C2

µν = 1
C2 g̃η

µν , where the < gη , g̃η > Janus field is asymptot-
ically η , it is straightforward to rewrite the local DG Janus Field equation now satisfied by this
asymptotically Minkowskian Janus field after those replacements (here only the time-time equa-
tion):

C2√g
Gtt

gtt
− 1

C2

√
g̃

G̃tt

g̃tt
=−8πG(C4√gδρ− 1

C4

√
g̃ ˜δρ) (4.1)

where Gµν = Rµν − 1
2 gµνR and δρ is as usual the energy density for matter and radiation density

fluctuations. Notice that for no fluctuations, the solutions are Minkowskian as needed. Then for
C >> 1 we are back to Gtt = −8πGC2gttδρ , a GR like equation for local gravity from sources
on our side because all terms depending on the conjugate field become negligible on the left hand
side of the equation while the local gravity from sources on the dark side is attenuated by the huge
1/C8 factor (in the weak field approximation, Gtt = 8πG δ ρ̃

C6 ). So for C >> 1 we expect the same
gravitational waves emission rate as within GR and the same weak gravitational field. However on
the dark side everything will feel the effect of the anti-gravitational field from bodies on our side
amplified by the same huge factor relative to the gravity produced by bodies on their own side. Of
course the roles are exchanged in case C << 1. Only in case C=1 would we recover our exponential
dark gravity, with no significant GW radiations and also a strength of gravity (Gtt = −4πGδρ)
reduced by a factor 2C2 relative to the above approximately GR gravity.

5. Back to Black-Holes and gravitational waves

For C-asymptotic isotropic static metrics of the form gµν = (−B,A,A,A) in e.g. dτ2 =

−Bdt2 +A(dx2 + dy2 + dz2) and g̃µν = (−1/B,1/A,1/A,1/A). With A = C2ea and B = C2eb,
we get the differential equations satisfied by a(r) and b(r):

a′′+2a′+
a′2

p
= 0 b′ =−a′

1+a′r/p
1+2a′r/p

(5.1)

4



P
o
S
(
E
D
S
U
2
0
1
8
)
0
4
7

DG acceleration Frederic Henry-couannier

where p = 4 ea+bC4+1
ea+bC4−1 . The integration is not easy when p can’t be assumed constant so in the strong

field regime we need to rely on numerical approximation methods to understand what’s going on
near the Schwarzschild radius. The numerical integration in Geogebra (using NResolEquaDiff)
was carried on and the resulting b(r) are shown on the right of Figure 1 for various C values. It is
found that as C increases b(r) will closely follow the GR solution near the Schwarzschild radius
over an increasing range of b(r) and perfectly mimic the GR black hole horizon, however at some
point the solution deviates from GR and crosses the Schwarzschild radius without singularity. This
pseudo-BH solution and other more speculative related ideas are discussed at length in [1].

6. Conclusion

New developments of DG solve the tension between the theory and gravitational waves ob-
servations. The most important theoretical result remains the avoidance of both the Big-Bang
singularity and Black Hole horizon. It also turns out that a discontinuous transition very natural
within the DG framework, could have triggered the recent acceleration of the Universe. Stability
issues are discussed in great details in [1] leading to the conclusion that the theory is viable and
natural as a semiclassical theory of gravity. Unifying the global and local sectors of DG leads to a
new rich MOND like phenomenology and Dark Matter candidates.
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Figure 1: Left: Evolution laws and time reversal of the conjugate universes, our side in red. Right: b(r) near
the Schwarzschild radius (r=1) for various C values.
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