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The Casimir effect is a quantum phenomenon rooted in the fact that vacuum fluctuations of quan-
tum fields are affected by the presence of physical objects and boundaries. Since the energy
spectrum of the vacuum fluctuations depends on distances between (and geometries of) physical
bodies, the quantum vacuum exerts a small but experimentally detectable force on neutral objects.
Usually, the associated Casimir energy is calculated for free or weakly coupled quantum fields.
We review recent studies of the Casimir effect in field-theoretical models which mimic features of
non-perturbative QCD such as chiral or deconfining phase transitions. We discuss CPN−1 sigma
model and chiral Gross-Neveu model in (1+1) dimensions as well as compact U(1) gauge theory
and Yang-Mills theory in (2+1) dimensions.
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1. Introduction

The presence of physical (material) objects affects virtual (vacuum) fluctuations nearby. The
total energy of vacuum fluctuations depends on shapes, orientations, and distances between phys-
ical bodies so that the bodies experience mutual forces related to the minimization of the vacuum
energy. This mechanism is a cornerstone of the Casimir effect [1], which implies that even neutral
physical bodies may interact which each other via forces of the vacuum origin. Although the en-
ergy density of the vacuum fluctuations is given by a divergent integral and/or sum, the excess in
the vacuum energy caused by the presence of the physical bodies is a finite quantity. The difference
between the two is called the Casimir energy.

A simplest realization of the Casimir effect is given by two parallel plates made of a perfectly
conducting metal. The plates act as boundaries which restrict fluctuations of the electromagnetic
field. Since the corresponding Casimir energy per unit plate area (“the Casimir pressure”),

〈E〉
Area

=− π2

720
h̄c
R3 , (1.1)

diminishes with the decrease in the separation R between the plates, the Casimir effect leads to
an attractive force between the plates. Although this quantum force is extremely small at human
scales, the Casimir pressure reaches the tremendous value of 1 atmosphere at the “optimistic sepa-
ration” of R = 10 nm between the plates.

The effect has been observed experimentally [2, 3] down to separations of 100 nm between
a highly-conducting metallic sphere and a plate with an accuracy of about 1% in Ref. [3] and in
further experiments (the double-plate geometry is difficult to realize in practice due to geometrical
imperfections of physical plates). The Casimir effect is an important phenomenon not only in
view of its possible future applications in technology, but also due to its fundamental value which
indirectly demonstrates the physical significance of the vacuum energy. In our short review we
leave aside the important theoretical question if the Casimir effect is a “decisive” evidence of the
existence of the zero-point energies of quantum fields or not [4]. We treat the Casimir energy as
a real observable quantity since the associated force has indeed been observed in the real physical
experiments. Excellent reviews of the Casimir effect may be found in Refs. [5, 6].

We discuss how (self-) interactions of quantum fields affect the vacuum properties in a finite
Casimir geometry and vice versa. In the phenomenologically interesting case of quantum electro-
dynamics, radiative corrections to the Casimir effect can be calculated in perturbation theory. De-
spite of the weakness of the electromagnetic interaction, the fluctuations of photons and electrons
in a finite geometry may lead to surprising results such as the Scharnhorst effect [7] (Section 2).

In strongly coupled theories the interactions may not only lead to a substantial modification of
the Casimir energy, but they may also affect the nonperturbative structure of the vacuum itself. We
discuss the effects of the finite geometry confinement (Section 3) and dynamical breaking of the
chiral symmetry (Section 4) in certain model-based and first-principles calculations.

We leave aside finite geometry effects which emerge in interacting theories possessing second-
order thermal phase transitions: Due to a divergent correlation length, thermal fluctuations exert
thermodynamic Casimir-like forces on a boundary of the system [8]. In spin models, the thermo-
dynamic Casimir effect has been studied in details in Refs. [9]. We also do not touch the powerful
world-line numerical approaches to the Casimir effects in nontrivial geometries [11].
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2. Perturbative corrections to the Casimir effect

The Casimir phenomenon, in its original formulation, arises due to quantum fluctuations of
free fields in a vacuum. The presence of boundaries affects the spectrum of virtual particles (quan-
tum fluctuations), and, expectedly, their vacuum energy. In interacting field theories, the energy
spectrum of the virtual particles is affected not only by the boundary of the system but also by the
(self-) interaction between the particles. This interaction modifies the Casimir energy.

Below we will briefly discuss the influence of the perturbative interactions on the Casimir
forces in quantum electrodynamics which is a well-understood weakly interacting theory. Then we
will proceed to explore certain nonperturbative Casimir effects in strongly interacting theories that
exhibit chiral symmetry breaking and confinement phenomena.

I Perturbative correction to the Casimir energy. The Casimir effect, despite its quantum nature, is
determined by tree-level physics. In the original proposal of H. Casimir, the vacuum modes of free
virtual photons are modified by two ideal narrowly-placed parallel plates, leading to a drop in the
electromagnetic energy-density in between the plates (1.1). In quantum electrodynamics, the tree-
level Casimir energy is affected by radiative corrections which appear as a result of interactions of
the (virtual) photons with (virtual) electrons and positrons. A leading perturbative correction to the
tree-level Casimir effect is given by a one-loop process in which a virtual photon scatters off one
plate, creates a virtual electron-positron pair that annihilates into another photon which, finally, hits
the opposite plate. Due to this process, the Casimir energy acquires the radiative correction coming
from photonic and fermionic fluctuations [10]:

〈δE〉
Area

=− π2

720
h̄c
R3

(
1− 9αe.m.h̄

32mec
1
R

)
, αe.m. =

e2

4π
≈ 1

137
, (2.1)

where me is the mass of the electron. The radiative contribution in Eq. (2.1) is, expectedly, very
small: even at our “optimistic” R = 10 nm separation between the plates, it gives a 10−7 correction
to the leading free-photon energy (1.1). Needless to say that an observation of this tiny radiative
effect is incompatible with the existing experimental technology.

I The Scharnhorst effect. Radiative corrections in the double-plate configuration also lead to an
unexpected result: it turns out that the velocity of low-frequency light, propagating in the normal
direction with respect to the plates, exceeds the standard velocity of light c by the amount:

δc =+
11π2

902 α
2
e.m.

(
h̄

mec
1
R

)4

> 0 . (2.2)

In other words, a photon travels in the space between the plates faster than in an unbounded vacuum
outside the plates. This is the Scharnhorst effect [7]. The correction (2.2) emerges in the second-
order perturbation theory as a light-by-light scattering process which proceeds via a fermion-box
loop: a pair of legs corresponds to a travelling photon while another pair of legs is a closed loop of a
virtual photon that scatters off the both boundaries. The positive addition to the speed of light (2.2)
is too small to be observed in practice as it amounts to a 10−24 correction to the speed of light at our
benchmark distance in R = 10 nm . Notice that despite the Scharnhorst effect formally implying a
suspicious “faster-than-light travel”, it cannot be used to create causal paradoxes [12].
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3. Casimir effect, mass gap generation and (de)confinement

Consider now a nonperturbative vacuum of a confining (gauge) theory in which a particle and
an antiparticle are attracted to each other by a linear potential at large enough distances. One may
think of Quantum Chromodynamics in which the fundamental color degrees of freedom, quarks
and gluons, are confined into colorless states, hadrons and glueballs. The nonperturbative confining
force is closely related to the dynamical mass generation in Yang-Mills theory.

Let us impose the Casimir conditions on the confining fields. How does confinement and
mass gap generation influence the Casimir energy? And, vice versa, what is the effect of the finite
Casimir geometry on the confining properties and the phase structure of the theory? Since in QCD
these questions are of a nonperturbative nature, it is natural to address them first in appropriate toy
models and then in first-principles lattice simulations of Yang-Mills theory.

Before proceeding further we would like to notice that a finite Casimir geometry is not always
equivalent to a finite (closed) volume. In a finite volume a smallest nonzero momentum increases
as the volume shrinks to zero. This momentum serves as an infrared cutoff of the theory, which –
in a sufficiently small volume – may become higher the intrinsic scale where perturbation theory
becomes valid. As a result, asymptotically free theories in a shrinking volume become weakly
coupled and gradually lose their non-perturbative properties (for example, Yang-Mills theories in a
finite volume become deconfining at zero temperature). In addition, in a finite volume, phase tran-
sitions are usually turned into smooth crossovers. This is not the case for the Casimir “plate-plate”
geometries where, apart from the case of (1+1) dimensions, at least one of the space directions is
unbounded.

3.1 CPN−1 sigma model in (1+1) dimensions

The (1+1) dimensional CPN−1 sigma model is often considered as a toy model which mimics
all essential nonperturbative features of QCD [13]: both models exhibit asymptotic freedom and
dynamically generate a mass gap, they have nonperturbative condensates and topological defects.
Similarly to QCD, the CPN−1 sigma model has two phases at a finite temperature: a confining
(“Coulomb”) low-temperature phase and a deconfining (“Higgs”) high-temperature phase.

The classical action of the 1+1 dimensional CPN−1 sigma model

S =
∫

dt
∫

dx
[
(Dµni)

∗(Dµni)−λ (n∗i ni− r)
]
, r =

4π

g2 , (3.1)

describes the dynamics of N complex scalar fields ni (with i = 1, . . . ,N) coupled via the covariant
derivative Dµ = ∂µ − igAµ to the non-propagating Abelian gauge field Aµ . The model possesses
the local Maxwellian U(1) symmetry ni(x)→ eiω(x)ni(x) and Aµ(x)→ Aµ(x)+∂µω(x).

The Lagrange-multiplier field λ = λ (t,x) imposes the constraint n∗i ni = r which determines
the “length” r of the complex vector (n1, . . .nN) via the coupling g in Eq. (3.1). In an unbounded
space, a one-loop analysis shows that the renormalized coupling runs with the momentum scale µ:

r(µ)≡ 4π

g2(µ)
=

N
2π

log
µ

Λ
, λ = Λ

2, (3.2)

where Λ≡ m is the dynamically generated mass.
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What happens with the confining vacuum of the CPN−1 model in-between the “plates” and
what is the associated Casimir energy? Since in one spatial dimension the “plates” are isolated
points, the problem should be formulated on a finite spatial interval −L/2 ≤ x ≤ L/2 with certain
boundary conditions at its ends x =±L/2. There are three series of papers devoted to this problem
in the current literature: [14, 15, 16], [17], and [18, 19]. We will briefly review them below.

It is convenient first to assume that the condensate of the field ni develops only in one “clas-
sical” i = 1 component, 〈n〉 = σδn,1, while 〈ni〉 = 0 for the “quantum” part with i = 2, . . . ,N.
Integrating out the latter, one gets the effective action for the condensates σ and λ :

Seff =
∫

dt
∫

dx
[
(N−1) log

(
−D∗µDµ +λ

)
+(Dµσ)∗(Dµ

σ)−λ (|σ |2− r)
]
. (3.3)

Working in the large-N approximation, turning the condensate σ to the real axis and ignoring the
non-dynamical gauge field (Aµ = 0), one gets total energy of the system [14]:

E = N ∑
n

ωn +
∫ L

0
dx
[
(∂xσ)2 +λ (σ2− r)

]
. (3.4)

The first term corresponds to the Casimir sum over the eigenenergies ωn of quantum fluctuations
of the ni fields (i = N−1) on top of the classical background of the condensate λ (x):[

−∂
2
x +λ (x)

]
fn(x) = ω

2 fn(x). (3.5)

The second term in Eq. (3.4) is the classical energy of the condensate σ(x) itself. The condensate
obeys the extremization equation determined by the variation of the action (3.3) with respect to σ :

∂
2
x σ(x)−λ (x)σ(x) = 0. (3.6)

Both condensates λ and σ may depend on the coordinate x because on a finite interval the trans-
lational invariance is lost. This spatial dependence makes the problem very difficult as the ground
state is determined by a global minimum of the energy (3.4), which involves the Casimir part. The
latter contribution involves the full spectrum of quantum fluctuations ωn which, in turn, depends
on the classical condensates in a nonlocal way via equation (3.5).

In an unbounded space (L→ ∞) the translational invariance is restored and the condensates σ

and λ should become space-independent quantities (unless the translational symmetry is sponta-
neously broken; see below). Then Eq. (3.6) implies that in the ground state σλ = 0, so that at least
one of these condensates must vanish. Therefore, one should distinguish the following two phases:

I the “confinement” phase, characterized by the dynamically generated mass
√

λ ≡ Λ 6= 0
(3.2) and the vanishing n-field condensate σ = 0. Due to the presence of the mass gap Λ the
energy density per unit length of the system is a quantity the order of Λ2 so it grows with the
linear length of the system in analogy with a confining string in QCD.

I the “deconfinement” (Higgs) phase with a vanishing mass λ = 0 and the condensed field
σ 6= 0. The “string tension” is absent while the condensate breaks the U(1) symmetry.

According to Eq. (3.6), on a finite interval the system may also develop a third phase, in which
both condensates are nonzero, λ (x)σ(x) = ∂ 2

x σ(x) 6= 0 if the condensate σ(x) is not a constant:

4
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I the “mixed” phase possesses both the inhomogeneous dynamical mass
√

λ 6= 0 (as in the
confining phase), and the inhomogeneous condensate σ 6= 0 (as in the non-confining phase).

Properties of a field theory in a finite geometry depend crucially on conditions applied to the
fields at the boundary of the system. For example, a free massless scalar field on a finite one-
dimensional interval has a negative Casimir energy if the field is subjected either to the Dirichlet-
Dirichlet (D-D) or to Neumann-Neumann (N-N) boundary conditions, applied at the same time at
both ends of the interval. If one associates the ends with impurities, then these impurities would
tend to attract each other. If the boundary conditions are of a mixed type (D-N) then the Casimir
energy is a positive quantity and the impurities would repel each other.

In the CPN−1 sigma model it is natural to set boundary conditions on the ni fields only. Indeed,
the fields λ and Aµ are not constrained at the boundaries because the Lagrange multiplier λ should
enforce the classical condition condition n∗i ni = r both in the bulk and at the boundary while the
gauge field Aµ is not a propagating degree of freedom at all.

Since the matter field ni is a multicomponent field, we have various choices for boundary
conditions as we may imply different (Dirichlet or Neumann) conditions for different combinations
of the components (i, j,k = 1, . . .N) at the opposite ends of the interval (x =±L/2):

Dr: ni(x) =
√

r; D0: n j(x) = 0; N: Dxnk(x) = 0. (3.7)

In Ref. [14] the large-N CPN−1 sigma model has been studied on a finite interval with the
D-D boundary conditions [so that the Dr (D0) requirement is applied to the i = 1 ( j = 2, . . . ,N)
component(s) at the both ends of the interval] and with the N-N boundary conditions (3.7). In both
cases the model was found to possess the unique “mixed” phase where both the mass gap m =

√
λ

and the condensate σ are non-zero. These quantities turned out to be functions of the coordinate
x which diverge at the boundaries of the system at x→ ±L/2. The divergence is an expected
phenomenon since the coupling g, as well as the length of the field r = n∗i ni, gets renormalized
r = r(µ) at the boundary according to Eq. (3.2). The renormalization scale is governed by the
distance to the boundary, µ = 1/x, while the length scale Λ is determined by the dynamically
generated mass in the unbounded theory. The numerical solutions for the condensates, obtained in
Ref. [14] and shown in Fig. 1, are perfectly consistent with this behavior.

Figure 1: The mass gap
√

λ (x) and the matter-field condensate (squared and normalized), σ2(x)/N, as
functions of the coordinate x for various lengths L of the interval (here 0 < x < L), in units of the mass gap
Λ of the unbounded (L→ ∞) system. Both plots apply to the D-D and to N-N boundaries. (From Ref. [14]).
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As the length of the system increases, L→ ∞, the mass gap approaches its infinite-volume
value

√
λ →Λ = const (shown by a thin line in the left panel of Fig. 1) while the scalar condensate

σ vanishes. Thus, the mixed phase smoothly approaches the confining phase in the large volume
limit. No phase transition is observed between these phases. The total Casimir energy of the
system gently interpolates between a standard short-distance behavior of O(N) free (in a leading
order) complex scalar fields and the long-distance non-perturbative string-like behavior with the
string tension determined by the dynamically generated mass scale Λ [15]:

E(L) =

{
−Nπ

6L , L� 1/Λ,

NΛ2L
4π

, L� 1/Λ.
(3.8)

A similar situation holds for generic Dirichlet conditions, in which the directions of the condensates
〈ni〉 at the opposite boundaries (3.7) are misaligned. The Casimir energy density is a monotoni-
cally increasing function of a degree of misalignment, which takes its global minimum when the
boundary condensates are parallel in the CPN−1 space [16].

In an alternative, analytical approach of Ref. [17] the authors provide a support for the ex-
istence of two phases in the same model on an interval with the D-D boundary conditions. The
confining (non-confining) phase was argued to be realized at large (small) length of the interval.
The Casimir force turned out to be repulsive in the Higgs phase, while in the confining phase
the force may change from the repulsive (small L) to an attractive (large L) regime. The “two-
phases” ground state proposed in Ref. [17] differs from the “one-phase” ground state found in
Refs. [14, 15, 16] although both these states are inhomogeneous. In particular, the behavior of the
corresponding solutions near the boundaries differ from each other.

Contrary to the solutions of Ref. [14, 15, 16], the result of Ref. [17] does not have an explicit
relation to the dynamical mass scale Λ of the homogeneous vacuum in the infinite-volume limit.
On the other hand, the homogeneous nature of the true L→∞ ground state itself was very recently
called for re-consideration in Ref. [20] in view of the newly found soliton-like inhomogeneous
solution [21]. It was pointed out in Ref. [20] that in an infinite volume the inhomogeneous vacuum
state may possess lower energy compared to the well-known homogeneous vacuum.

Coming back to finite-length systems, we notice that a constant solution with the D-D bound-
ary conditions would lead to the existence of two phases: a deconfinement (Higgs) phase at small
L and a confinement phase at large L, while favoring a unique phase – albeit translationally invari-
ant – with the N-N boundaries for all components of the fields [18]. However, the homogeneous
condensate solutions were shown in Ref. [14] to be incompatible with the mass gap equations on a
finite interval with either D-D ot N-N boundary conditions (3.7). For the D-D conditions, the same
conclusion about the absence of a homogeneous ground state was made independently in Ref. [17].

It was argued in Ref. [19] that constant condensates are compatible with mixed boundary con-
ditions in a CP2N model, where N components (i = 1, . . . ,N) of the field ni obey mixed Dirichlet-
Neumann conditions [more precisely, D0-N according to Eq. (3.7)], another N components (i =
N+1, . . . ,2N) satisfy the “mirrored” N-D0 conditions while the remaining single (2N+1)’th com-
ponent satisfies the N-N conditions at the both ends. In this specific case the model should indeed
possess two translationally-invariant phases separated by a phase transition at the critical distance
Lc = π/(4Λ) [19]. If one chooses instead the D0-D0 conditions for N components and N-N con-
ditions for another set of N components, then the ground state may be chosen in a homogeneous
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form, the finite-L phase transition does not exist, and the model contains only one (confinement)
phase [19]. Thus, the boundary conditions substantially affect the ground state and the phase struc-
ture of the CPN−1 sigma model on a finite interval.

3.2 Compact electrodynamics in (2+1) dimensions

Compact electrodynamics (or “compact QED”) is another toy model which has interesting
nonperturbative features similar to those of QCD: linear confinement of electric charges, mass gap
generation and the presence of topological defects in physically relevant cases of two and three
spatial dimensions. In the case of two spatial dimensions these phenomena may be treated, in a
weak coupling regime, using analytical techniques [22]. Apart from its role as a toy model used
to mimic the mentioned phenomena in particle physics, compact QED also serves as an effective
macroscopic model in a wide class of condensed matter systems [23, 24]. Below we will briefly
describe properties of the Casimir effect in compact QED obtained in first-principles simulations
of lattice field theory (earlier lattice numerical calculations in non-interacting regimes of similar
models were done in Ref. [25]).

In the 3d Euclidean formulation, the (2+1)d compact QED has the following lattice action

S[θ ] = β ∑
x

3

∑
µ,ν=1
µ<ν

(
1− cosθPµν

)
, β =

1
g2a

, (3.9)

where the sum is taken over all elementary plaquettes Px,µν of the lattice. The lattice gauge field
θx,µ ∈ [−π,+π) is a compact Abelian variable (hence the name “compact QED”) defined at each
link lx,µ of the lattice. They enter the action (3.9) via the plaquette angles θPx,µν

= θx,µ +θx+µ̂,ν −
θx+ν̂ ,µ − θx,ν , which play the role of the lattice field strength. The lattice coupling constant β is
related to the lattice spacing (the length of an elementary link) a and to the electric charge g. Notice
that the electric charge is a dimensionful quantity [g] = mass1/2 in (2+1) dimensions.

In the continuum limit (a→ 0) the lattice plaquette variable tends, for small fluctuations of the
lattice photon fields, to its continuum version θPx,µν

= a2Fµν(x)+O(a4) with Fµν = ∂µAν −∂νAµ .
Consequently, the lattice action (3.9) becomes the standard photon action.

Compact QED (3.9) also possesses the monopole singularities with the density

ρx =
1

2π
∑

P∈∂Cx

θ̄P ∈ Z , θ̄P = θP +2πkP ∈ [−π,π), kP ∈ Z, (3.10)

where the integer number kP is chosen in such a way that the physical plaquette angle θ̄P is limited
to the interval [−π,π). The sum in Eq. (3.10) goes over all faces P of an elementary cube Cx. In
two spatial dimensions, the monopole is an instanton-like topological object which appears due to
the compactness of the gauge group. The compactness comes from the invariance of the action
(3.9) under the discrete transformations of the lattice field strengths: θP→ θP +2πn with n ∈ Z.

Thus, the model (3.9) describes the dynamics of photons (weak fields) and monopoles (strong
fields). The photons characterize a perturbative regime relevant, in particular, to a short-distance
Coulomb potential between test electric charges. The monopole dynamics is responsible for non-
perturbative effects such as the long-range linear potential between the oppositely charged particles:

V (L) = σL , σ =
4g
√

ρ

π
, ρ ≡ 〈|ρx|〉 (3.11)

7
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where the quantity σ – given in Eq. (3.11) in the dilute gas approximation [22] – is interpreted as
a tension of a string which spans between static particle and antiparticle, and confines them into a
chargeless bound state. The presence of monopoles generates the mass gap

m =
2π
√

ρ

g
, (3.12)

and drives a finite-temperature phase transition at certain critical temperature T = Tc.
In two spatial dimensions, the standard Casimir problem is formulated for one-dimensional

objects (“wires”). A static and infinitely thin wire, made of a perfect metal, forces the tangential
component of the electric field ~E to vanish at every point x of the wire, E‖(x) = 0. The wire
does not affect the pseudoscalar magnetic field B. In a covariant form the corresponding boundary
conditions are as follows:

Fµν(x)sµν(x) = 0 , sµν(x) =
∫

d2
τ

∂ x̄[µ,

∂τ1

∂ x̄ν ]

∂τ2
δ
(3)(x− x̄(~τ)

)
, (3.13)

where Fµν = ∂[µ,Aν ] ≡ ∂µAν−∂νAµ is the field strength tensor and sµν is the local surface element
of the world sheet of the wire described by the vector function x̄µ = x̄µ(~τ) and parametrized by the
two-vector~τ = (τ1,τ2).

It is convenient to consider two static straight wires directed, for example, along the x2 axis and
separated along the x1 direction at x1 = l1 and x1 = l2 as shown in Fig. 2(a). The x3 axis is associated
with the Euclidean “time” direction. A lattice analogue of the Casimir boundary condition (3.13),

cosθx,23

∣∣∣∣
x1=la

= 1, a = 1,2 , (3.14)

ensures that at the world-surfaces of the wires the lattice field strength vanishes. A simplest way
to implement the boundary condition (3.14) is to add a set of Lagrange multipliers to the standard
Abelian action (3.9) via the plaquette-dependent gauge coupling:

Sε [θ ] = ∑
P

βP(ε)cosθP , βPx,µν
(ε) = β

[
1+(ε−1)δµ,2δν ,3 (δx,l1 +δx,l2)

]
. (3.15)

The coupling is a function of the dielectric permittivity ε of the wire. At ε = 1 the wires are absent.
In the limit ε → +∞ the components of the physical lattice field-strength tensor (3.10) vanish at
the world surfaces of the wires as required by Eq. (3.14).

The Casimir energy density corresponds to a component of the canonical energy-momentum
tensor, T 00 = (E2 +B2)/(2g2). The numerical calculations reveal that the presence of the Abelian
monopoles affects the Casimir effect nonperturbatively [27]. At large separations between the wires
the Casimir energy becomes screened by the mass gap (3.12). At small separations, it is the wires
that affect the monopoles: as the wires approach each other, the relatively dense monopole gas in
between them gets continuously transformed into a dilute gas of monopole-antimonopole pairs, as
it is illustrated in Figs. 2(b) and (c) [28]. The geometry-induced binding transition is similar to the
infinite-order phase transition of a Berezinskii–Kosterlitz–Thouless (BKT) type [29] which occurs
in the same model at a finite-temperature [30].

The BKT transition is associated with a loss of the confinement property in between the metal-
lic plates because the weak fields of the magnetic dipoles cannot lead to a disorder of the Polyakov-
line deconfinement order parameter. This conclusion agrees well with the expectation from a direct
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Figure 2: (a) The geometry of the Casimir problem in (2+1)d lattice: the shadowed planes (“plates”) indicate
the plaquettes of the wire world-surfaces where the boundary condition (3.14) is implemented (from [26]).
Examples of typical configurations of monopoles (blue) and antimonopoles (red) in (b) a slice in between
closely spaced plates and (c) in a space outside the plates (from [27]).

evaluation of the Polyakov line in between the plates [28]. Figure 3(a) shows the phase structure
of the vacuum of compact electrodynamics in the space between long parallel Casimir wires at
finite temperature T . The deconfinement temperature Tc is a monotonically rising function of the
interwire distance R. Formally, the charge confinement disappears completely when the separa-
tion between the plates becomes smaller than certain critical distance R = Rc determined by the
condition Tc(Rc) = 0. According to the numerical estimates of Ref. [28], Rc = 0.72(1)/g2 .

●

●

●

●
●

●
●

● ●

ε→∞

Deconfinement

Confinement

2 3 4 5

0.30

0.35

0.40

Rg2

Tc
g2

(a) (b)

Figure 3: (a) The phase in-between the plates: the critical temperature Tc of the deconfinement transition as
the function of the inter-plate distance R in units of the electric charge g in the ideal-metal limit (ε→∞). (b)
An illustration of the deconfinement in the space between the plates (from Ref. [28]).

3.3 Yang-Mills theory in (2+1) dimensions

The Casimir problem may also be formulated for a non-Abelian gauge theory which possesses
inherently nonperturbative vacuum structure. It is instructive to consider a zero-temperature Yang-
Mills theory in (2+1) spacetime dimensions with the Lagrangian:

LY M =−1
4

Fa
µνFµν ,a, Fa

µν = ∂µAa
ν −∂νAa

µ +g f abcAb
µAc

ν , a = 1, . . .N2
c −1, (3.16)

where f abc are the structure constants of the SU(Nc) gauge group. The model in (2+1) dimensions
exhibits both mass gap generation and color confinement similarly to its 3+1 dimensional counter-
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part. A non-Abelian analogue of the perfect conductor condition (3.13) is straightforwardly given
by a simple substitution of the field strength: Fµν → Fa

µν . In the rest of this subsection, we discuss
the simplest Yang-Mills theory with two colors, Nc = 2.

The theory (3.16) can be studied using first-principles numerical lattice simulations with the
use of the standard Wilson plaquette action SP = βP(1− 1

2 TrUP), where the plaquette field strength
UPx,µν

= Ux,µUx+µ̂,νU†
x+ν̂ ,µU†

x,ν is given by the ordered product of four SU(2) link fields Ul along
the plaquette edges. In the bulk, the plaquette lattice couplings βP ≡ β = 4/(ag2) are related to the
lattice spacing a similarly to the Abelian case (3.15). At the wire world-surface, shown in Fig. 2(a),
the plaquette couplings are set to infinity. The physical scale for the dimensional couplings is set
by the tension σ of the confining string in a zero-temperature theory.

(a) (b)

Figure 4: (a) The Casimir potential VCas for a chromometallic wire as the function of the distance R between
the wires (in units of the string tension σ ) at various ultraviolet lattice cutoffs controlled by the lattice
spacing β . The line is the best fit (3.17). (b) A typical expectation value of the absolute value of the mean
Polyakov line in the spaces in between and outside the wires vs. the interwire separation R. (From Ref. [31]).

The Casimir energy of gluon fluctuations per unit length of the wire is shown in Fig. 4(a). The
lattice results – which exhibit the excellent scaling with respect to a variation of the lattice cutoff –
can be described very well by the following function:

VCas(R) = 3
ζ (3)
16π

1
R2

1
(
√

σR)ν
e−MCasR, (3.17)

where the anomalous power ν (which controls the short-distance behavior) and the “Casimir mass”
MC (which is responsible for the screening at large inter-wire separations) may be determined with
the help of a fitting procedure. The values ν = 0 and MCas = 0 correspond to the Casimir energy of
three non-interacting vector particles. In the SU(2) Yang-Mills theory one gets:

MCas = 1.38(3)
√

σ , ν∞ = 0.05(2). (3.18)

Surprisingly, the Casimir mass MCas turns out to be substantially smaller than the mass of the
lowest colorless excitation, the 0++ glueball, M0++ ≈ 4.7

√
σ (the latter quantity has been calculated

numerically in Ref. [32]). In Ref. [33] it was shown that the (2+1) Casimir mass may be related to
the magnetic gluon mass of the Yang-Mills theory in (3+1) dimensions.

In Fig. 4(b) we show the expectation value of the order parameter of the deconfining transition,
the Polyakov loop 〈L〉, in the space inside and outside the wires. Similarly to the compact Abelian
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case, the gluons in between the wires experience a smooth deconfining transition as the wires
approach each other, thus confirming the qualitative picture shown in Fig. 3(b).

4. Casimir effect and chiral symmetry breaking

Another important phenomenon of the strong interactions, the spontaneous chiral symme-
try breaking, takes place in the fermionic sector of QCD. Many features of the chiral symmetry
breaking may be captured by the Nambu–Jona-Lasinio model [34]. We will consider its (1+1) di-
mensional version which is known as the chiral Gross-Neveu (GN) model [35]. In a massless limit,
the Lagrangian of this model

L = iψ̄ /∂ψ +
g
2

[
(ψ̄ψ)2 +(ψ̄iγ5ψ)2

]
, (4.1)

is invariant under the continuous chiral transformations ψ→ eiγ5αψ of the N-flavor fermion field ψ .
The chiral symmetry is spontaneously broken by the combined scalar-pseudoscalar condensate
∆ =−(〈ψ̄ψ〉− i〈ψ̄iγ5ψ〉)/g which emerges spontaneously.

The ground state of the chiral GN model (4.1) corresponds to an extremum of an effective
action which includes contributions from the condensate ∆ itself and from the quantum fluctuations
over it. On general grounds, one could expect that in a spatially bounded system (on an interval
with equivalent boundary conditions at the both ends) the bosonic condensate will try to push the
boundaries of the system outwards. This repulsive force would compete with an attractive force
coming from the usual Casimir effect produced by the quantum fluctuations of fermions.

(a) (b)

Figure 5: (a) Casimir pressure as a function of the elliptic parameter ν and the spatial size L of the system
in the chiral GN model in (1+1) dimensions (4.1), from Ref. [36]. (b) The phase diagram of the (3+1)
dimensional model of interacting fermions (4.2) for the inter-plate distance L and temperature T , from
Ref. [37]. The dimensional quantities are expressed in units of the coupling g.

A self-consistent inhomogeneous solution for the ground state of the large-N chiral GN model
on an interval was found in Ref. [36]. The condensate and, consequently, the Casimir energy can
be expressed in terms of Jacobi’s elliptic functions. The shape of the solution is controlled by
the elliptic modulus parameter ν which, in turn, implicitly depends on the coupling constant g of
the model (4.1). The Casimir force exhibits a nontrivial behavior displaying a transition from an
attractive to a repulsive regime occurring at a critical value ν ≈ 0.4, Fig. 5(a). At a small length L
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of the interval, a decrease (increase) in the coupling g, reduces (increases) the elliptic parameter ν

thus leading to an attractive (repulsive) behavior of the Casimir force [36].
In (3+1) dimensions, the chiral symmetry breaking in the Casimir double-plate geometry has

been studied in the interacting fermionic model with the Lagrangian [37, 38]:

L = iψ̄ /∂ψ +
g
2
(ψ̄ψ)2 , (4.2)

which is invariant under the discrete Z2 chiral transformation ψ → γ5ψ . The theory (4.2) is the
higher-dimensional analogue of the original Gross-Neveu model [35].

In an infinite volume the vacuum of this model develops a dynamical chiral condensate 〈ψ̄ψ〉
which breaks the Z2 chiral symmetry. The condensate vanishes and the symmetry is restored at
high temperatures via a second order phase transition. In the presence of the approaching Casimir
plates, the critical temperature decreases while the phase transition becomes of the first order.
As the plates become sufficiently close to each other, the chiral symmetry gets completely restored
even at zero temperature. The phase diagram of the interacting fermionic model (4.2) in the volume
in-between the Casimir plates is shown in Fig. 5(b). The restoration of the chiral symmetry due to
the shrinking Casimir geometry agree well with the observation that boundary effects restore the
chiral symmetry in a chirally broken phase [39, 40].

5. Conclusions

We briefly reviewed the Casimir effect in interacting field theories. In the perturbative context
of QED, a one-loop correction leads to the expectedly small contribution (2.1) to the Casimir
energy [10]. A two-loop calculation reveals surprising (albeit very tiny) increase of the speed of
light in between the plates (2.2). This “faster-than-light” phenomenon, known as the Scharnhorst
effect [7], does not lead to causal paradoxes, however [12].

Focusing on non-perturbative features of QCD, we discussed recent studies of the Casimir
effect in various field-theoretical models which mimic the physics of confinement, mass gap gen-
eration and/or chiral symmetry breaking.

In (1+1) dimensions, the asymptotic freedom and mass gap generation may be modeled by the
CPN−1 sigma model. The nature of its ground state on a finite spatial interval depends crucially
on a precise form of the conditions imposed on the fields at the boundaries [14, 15, 16, 17, 18, 19].
While the structure of the ground-state condensates is currently under debates (both in infinite
space [20] and on a finite interval), it is clear that the Casimir force is strongly affected the mass-
gap generation phenomenon.

In (2+1) confining field theories, the Casimir double-wire geometry with perfect (chromo-)
metallic boundary conditions causes a smooth deconfining transition both in the compact electro-
dynamics [26, 27, 28] and in Yang-Mills theory [31]. Moreover, the Casimir problem in Yang-Mills
theory reveals a new intrinsic mass scale which is substantially lower than the lowest 0++ glueball
mass [31]. This Casimir mass was argued to be related to the magnetic gluon mass in a finite-
temperature Yang-Mills theory in (3+1) dimensions [33].

In the chiral sector, the interactions may lead to a change of the sign of the Casimir force
and affect the pattern of the chiral symmetry breaking in the chiral Gross-Neveu model in (1+1)
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dimensions [36]. In a similar model in (3+1) dimensions, the Casimir effect in the double-plate
geometry leads to the strengthening of the finite-temperature phase transition and to the decrease
of critical temperature associated with chiral symmetry breaking [37].
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