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1. Introduction

The energy-momentum tensor (EMT)

T µν(x) (1.1)

is one of the most fundamental observables in physics. Its temporal and spatial components are
related to important quantities in physics, i.e. energy density ε , momentum density Pi, and the
stress tensor σi j(x), as

ε(x) = T 00(x), Pi(x) = T 0i(x), σi j(x) =−T i j(x) (i, j = 1,2,3). (1.2)

Among these observables, the stress tensor σi j(x) is a particularly interesting quantity because it
represents the distortion of the field which mediates the force between charges. The direct analysis
of the stress tensor in various systems in QCD, such as static-quark systems and hadrons, will
provide us with deeper understanding on these systems based on microscopic points of view in a
gauge invariant manner. In a thermal system at nonzero temperature, σi j(x) is given by a diagonal
matrix representing the pressure, which provides basic information about thermodynamics.

Recently, considerable developments have been made in numerical analyses of EMT in lattice
gauge theory [1]. In particular, it was found [2] that the analysis of EMT on the lattice can be
performed successfully with the use of the gradient flow [3, 4, 5]. Because EMT is a fundamental
observable in physics, its analyses on the lattice will provide us with new insights into QCD and
non-Abelian gauge theories.

In this proceeding, after introducing the EMT operator on the lattice constructed from the
gradient flow in Sec. 2, we discuss recent applications of the EMT operator to the analysis of
various quantities, thermodynamics (Sec. 3), EMT correlation functions (Sec. 4), and the stress
distribution in the QQ̄ system (Sec. 5).

2. Energy-momentum tensor and gradient flow

Let us first consider the construction of EMT using the gradient flow [2]. The gradient flow for
the YM theory is a continuous transformation of the gauge field Aµ(x) defined by the differential
equation [3, 4, 5]

dAµ(t,x)
dt

=−g2
0

δSYM(t)
δAµ(t,x)

= DνGνµ(t,x), (2.1)

with the Yang-Mills action SYM(t) composed of the field Aµ(t,x) at nonzero flow time t. The initial
condition at t = 0 is taken for the conventional gauge field; Aµ(0,x) = Aµ(x). The flow time t,
which controls the magnitude of transformation, has a dimension of inverse mass squared. At the
tree level, Eq. (2.1) is written as

dAµ

dt
= ∂ν∂νAµ +(gauge dependent term). (2.2)

Neglecting the gauge dependent term, Eq. (2.2) is the diffusion equation in four-dimensional space.
Therefore, the gradient flow for positive t acts as a cooling of the gauge field with smearing radius√

8t.
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In the present study, we use the gradient flow to introduce the EMT operator using the small
flow time expansion (SFTE) [5, 2]. The SFTE asserts that a composite operator Õ(t,x) composed
of the field Aµ(t,x) at t > 0 is represented in terms of the operators in the original gauge theory as

Õ(t,x)−−→
t→0

∑
i

ci(t)OR
i (x), (2.3)

in the small t limit, where OR
i (x) on the right-hand side are renormalized operators in the original

gauge theory at t = 0 with the subscript i denoting different operators.
In order to construct EMT using Eq. (2.3), we expand the following operators via the SFTE;

Uµν(t,x) = Ga
µρ(t,x)G

a
νρ(t,x)−

1
4

δµνGa
ρσ (t,x)G

a
ρσ (t,x), (2.4)

E(t,x) =
1
4

Ga
µν(t,x)G

a
µν(t,x). (2.5)

The SFTEs of Eqs. (2.4) and (2.5) are given by

Uµν(t,x) = αU(t)
[

T R
µν(x)−

1
4

δµνT R
ρρ(x)

]
+O(t), (2.6)

E(t,x) = 〈E(t,x)〉0 +αE(t)T R
ρρ(x)+O(t), (2.7)

where αU(t) and αE(t) are parameters which can be calculated perturbatively [2] and 〈·〉0 de-
notes vacuum expectation value and T R

µν(x) is the correctly renormalized EMT. Abbreviated are
the contributions from the operators of dimension 6 or higher, which are proportional to powers of
t because of dimensional reasons and suppressed for small t.

Combining Eqs. (2.6) and (2.7), we obtain

T R
µν(x) = lim

t→0
Tµν(t,x); Tµν(t,x) = c1(t)Uµν(t,x)+ c2(t)

δµν

4
[E(t,x)−〈E(t,x)〉0] . (2.8)

The coefficients c1(t) and c2(t) are calculated perturbatively up to one- and two-loop orders, re-
spectively, in Ref. [2]1. We use these coefficients in the following analysis.

The concept of the gradient flow and the construction of EMT via the SFTE can also be
extended to full QCD with fermions [6, 7, 8, 9]. In this case, one needs five operators for the
SFTE of EMT; in addition to Eqs. (2.4) and (2.5), there are three operators including fermions at
dimension 4. The coefficients in the SFTE in this case is calculated in Ref. [7] (see also Ref. [10]).

From Eq. (2.8), one can obtain T R
µν(x) in the numerical simulation of lattice gauge theory by

the following procedure:

1. Generate gauge configurations at t = 0 with a standard algorithm.

2. Obtain the flowed gauge field for t > 0 by numerically solving the flow equation (2.1).

3. Analyze Uµν(t,x) and E(t,x) on the flowed field at each t, and determine Tµν(t,x) in Eq. (2.8).
Then construct the expectation value or correlation functions of Tµν(t,x).

4. Carry out the double extrapolation to (t,a) = (0,0) where a is the lattice spacing.

1The perturbative analyses of c1(t) and c2(t) are recently extended to one more higher order; see Refs. [10, 11].
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Figure 1: Behaviors of ∆(t) and s(t) as functions of the flow time t at T/Tc = 1.68 in SU(3) YM theory [13].
The points denote numerical results obtained on the lattice with three different lattice spacings. The black
line denotes the result of the continuum extrapolation with fixed t. The values around tT 2 = 0 show the
results of t→ 0 extrapolation obtained with three different fitting ranges.

In the last step for the double extrapolation, the analysis has to be performed in the parameter
range satisfying a .

√
2t . R, where R is an infrared cutoff scale such as Λ

−1
QCD, or the shortest

length relevant for the problem such as T−1 = Nτa for temperature T and distances between op-
erators. The condition a .

√
2t is necessary to suppress the finite a correction which diverges for

t→ 0.

3. Thermodynamics

Now let us apply the EMT operator defined in the previous section to the analysis of thermo-
dynamic quantities in SU(3) YM theory [12, 13]. In the following, we consider ∆ = e−3p and the
entropy density s = (e+ p)/T given by linear combinations of the energy density e and pressure p.

In Fig. 1, we plot

∆(t) =−
4

∑
i=1
〈Tii(t,x)〉, s(t) =

1
T

(
−〈T44(t,x)〉+

1
3

3

∑
i=1
〈Tii(t,x)〉

)
, (3.1)

as functions of t at T/Tc = 1.68 obtained on the lattices with three different lattice spacings [13].
To take the double extrapolation (t,a)→ (0,0) from these results, we first carry out the continuum
extrapolation for each t. The result of this extrapolation is plotted by the black line with errors
shown by the shaded region. We then take the t→ 0 limit using this continuum extrapolated result
with three different fitting ranges of t; Range-1: 0.01 < tT 2 < 0.015, Range-2: 0.005 < tT 2 <

0.015, Range-3: 0.01 < tT 2 < 0.02. The extrapolated values with these ranges are shown in the
figure around tT 2 = 0. Their difference is taken into account in the systematic error in the final
result.

The T dependence of thermodynamic quantities ∆/T 4 and s/T 3 in SU(3) YM theory obtained
by this step is shown in Fig. 2 by the red circles [13]. In the figure, the results obtained by the
conventional integral method [14, 15] are also plotted. It is remarkable that the values of ∆/T 4

and s/T 3 obtained by the completely different methods agree well with each other. This agreement

3
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Figure 2: Temperature dependences of ∆/T 4 and s/T 3 (red circles) in SU(3) YM theory [13] together with
the previous studies based on the integral method (solid lines) [14, 15].

-4

-2

 0

 2

 4

 6

 8

 10

 12

 0  100  200  300  400  500  600

(e
-3

p)
/T

4

T (MeV)

gradient flow
T-integration

 0

 5

 10

 15

 20

 25

 30

 0  100  200  300  400  500  600

(e
+

p)
/T

4

T (MeV)

gradient flow
T-integration

Figure 3: Temperature dependences of ∆/T 4 and s/T 3 (red circles) in (2+1)-flavor QCD together with the
results obtained by the integral method (black triangles) [8].

suggests that EMT is successfully analyzed in the lattice simulation with the gradient flow by the
procedure introduced in the previous section.

Recently, novel methods to measure thermodynamics in lattice gauge theory have been pro-
posed [16, 17, 18, 19] besides the integral and gradient flow methods, and they are applied to SU(3)
YM theory. As summarized in Refs. [19, 11], all these results agree well with each other, but there
exists small but statistically significant discrepancy above but near Tc. Understanding the origin of
this difference is an important future study in the accurate measurement of thermodynamics.

The analysis of thermodynamics by the gradient flow method can be applied to full QCD
simulation with fermions [7, 8]. In Fig. 3, we show the T dependences of ∆/T 4 and s/T 3 in (2+1)-
flavor QCD obtained by the gradient flow method by the red circles, together with the results of
the integral method obtained on the same gauge configurations [8]. The mass of u,d quarks is
slightly heavy in this simulation; mπ/mρ ' 0.63. Since the numerical simulation in this study is
performed only for a single lattice spacing, the t→ 0 extrapolation is taken without the continuum
extrapolation to obtain the final result in Fig. 3. Various extrapolating functions are adopted to take
the t→ 0 extrapolation from numerical results at

√
2t & a. Fig. 3 shows that the two results agree

4
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Figure 4: Correlation functions C44;44(τ) (left), C44;11(τ) (middle), and C41,41(τ) (right) for several values of
flow time t for Nτ = 24 and T/Tc = 2.24. The red dashed lines on the middle and right panels show s/T 3 =

(ε + p)/T 4 obtained from the one-point function of the EMT with the same gauge configurations [20].

well with each other except for the high temperature region in which the t → 0 extrapolation is
unstable.

4. EMT correlation functions

Next, we apply the EMT operator Eq. (2.8) to the analysis of the imaginary-time correlation
function of EMT [20]

Cµν ;ρσ (τ) =
1

T 5

∫
V

d3x〈Tµν(~x, t)Tρσ (~0,0)〉. (4.1)

The EMT correlation function Cµν ;ρσ (τ) at nonzero temperature contains various important infor-
mation. For example, the spatial components Ci j;kl(τ) are related to transport coefficient through
Kubo formula [21]. However, Cµν ;ρσ (τ) is known to be extremely noisy in lattice simulations [21].

Here, as a first analysis of Cµν ;ρσ (τ) with the gradient flow method, we focus on the channels
including conserved quantities, i.e. C44;44(τ), C44;11(τ), and C41;41(τ). Because of the energy and
momentum conservation, these correlators do not have a τ dependence for τ 6= 0. Moreover, from
thermodynamic relations they are given by

C44;44(τ) =
cV

T 3 , C44;11(τ) =C41;41(τ) =−
s

T 3 , (4.2)

for τ 6= 0 where cV is the specific heat per unit volume.
Shown in Fig. 4 are the correlation functions C44;44(τ), C44;11(τ), and C41;41(τ) in SU(3) YM

theory calculated on the lattice with Nτ = 24 and T/Tc = 2.24 [20]. The results are shown for
several values of the flow time t. The figure shows that there exists a τ independent plateau for
τ &
√

2t which is consistent with the conservation of energy and momentum. The disappearance
of the plateau at τ .

√
2t comes from the over-smearing due to the gradient flow. To check the

second equation in Eq. (4.2), in the middle and right panels of Fig. 4 the value of s/T 3 is shown by
the red-dashed line. The panels show that C44;11(τ) and C41;41(τ) satisfy Eq. (4.2). More detailed
verification of Eq. (4.2) with the double extrapolation (t,a)→ (0,0), as well as the analysis of cV

with the use of the first equation in Eq. (4.1), is carried out in Ref. [20].
From these results, one finds that the EMT operator Eq. (2.8) is successfully applied to the

analysis of the EMT correlator Eq. (4.1). Therefore, it is an interesting subject to apply this method

5
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Figure 5: (a) Distribution of the principal axes of Ti j for a QQ̄ system separated by R = 0.69 fm in SU(3)
Yang-Mills theory with a = 0.029 fm and t/a2 = 2.0. (b) Distribution of the principal axes of the Ti j in
classical electrodynamics between opposite charges. In both figures, the red (blue) arrows in the upper
(lower) half plane are highlighted [25].

to the analysis of the spatial channels of Eq. (4.1) which are relevant for the transport coefficient.
Recently, the analysis of these channels with the conventional EMT operator in SU(3) YM theory
has been updated in Refs. [22, 23]. Because these studies use multi-level algorithm, however, it is
difficult to extend the analysis to full QCD. The analysis of Eq. (4.1) in full QCD with the gradient
flow method is reported in Ref. [24].

5. Stress tensor distribution around QQ̄

Now we consider the spatial component of EMT which is related to the stress tensor σi j as in
Eq. (1.2). In this section, we apply the EMT operator Eq. (2.8) to the analysis of the stress-tensor
distribution in static quark–anti-quark (QQ̄) systems in SU(3) YM theory [25] in which the YM
field strength is squeezed into a quasi-one-dimensional flux-tube structure [26]. In the previous
studies, the spatial structure of the flux tube has been investigated using the action density and the
color electric field. Compared with these observables, σi j has a clear physical meanings; the stress
tensor represents the local interaction mediated by the distortion of the YM field. Moreover, the
stress tensor enables us to study this system in a manifestly gauge invariant manner.

To prepare a static QQ̄ system on the lattice, we use the standard Wilson loop W (R,T ) with
static color charges at ~R± = (0,0,±R/2) and in the temporal interval [−T/2,T/2]. Then the ex-
pectation value of Tµν(t,x) around the QQ̄ is obtained by

〈Tµν(t,x)〉QQ̄ = lim
T→∞

〈Tµν(t,x)W (R,T )〉0
〈W (R,T )〉0

, (5.1)

where T → ∞ is to pick up the ground state of QQ̄. In actual numerical simulations, we use the
APE smearing for each spatial link to enhance the coupling of W (R,T ) to the QQ̄ ground state
with fixed T . We also adopt the standard multi-hit procedure by replacing each temporal link by its
mean-field value to reduce the statistical noise. The measurements of Tµν(t,x) for different values
of t are made at the mid temporal plane xµ = (~x,x4 = 0), while W (R,T ) is defined at t = 0.

6
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Figure 6: EMT distribution on the mid-plane after the double limit −〈T R
cc(r)〉QQ̄ and −〈T R

44(r)〉QQ̄ in the
cylindrical coordinate system for three different values of the QQ̄ distance R [25].

Before taking the double limit (t,a)→ (0,0), we illustrate a qualitative feature of the distribu-
tion of Ti j around QQ̄ at fixed a = 0.029 fm and t/a2 = 2.0 with R = 0.69 fm. In Fig. 5 (a) [25],
we show the two eigenvectors of the stress tensor defined by

Ti jn
(k)
j = λkn(k)i (k = 1,2,3), (5.2)

along with the principal axes of the local stress. The eigenvector with negative (positive) eigenvalue
is denoted by the red outward (blue inward) arrow with its length proportional to

√
|λk|:

←◦→ : λk < 0, →◦← : λk > 0. (5.3)

Neighboring volume elements are pushing (pulling) with each other along the direction of blue
(red) arrow. The spatial regions near Q and Q̄, which would suffer from over-smearing, are ex-
cluded in the figure. Spatial structure of the flux tube is clearly revealed through the stress tensor
in Fig. 5 (a) in a gauge invariant way. This is in contrast to the same plot of the principal axes of
Ti j for opposite charges in classical electrodynamics shown in Fig. 5 (b).

We note that the red arrows in Fig. 5 are naturally interpreted as the direction of the line of
field. In this sense, Fig. 5 (a) is a first gauge invariant illustration of the line of the color electric
field in YM theory.

Next, we focus on the mid-plane between the QQ̄ with z = 0 and extract the stress-tensor dis-
tribution by taking the double extrapolation (t,a)→ (0,0) [25]. On the mid-plane, it is convenient
to use the cylindrical coordinate system c = (r,θ ,z) with r =

√
x2 + y2 and 0 ≤ θ < 2π . One can

show that the EMT on the mid-plane is diagonalized in this coordinate as

T R
cc′(x) = diag(T R

rr(r),T
R

θθ (r),T
R

zz (r)). (5.4)

Shown in Fig. 6 is the r dependence of the resulting EMT, i.e. the stress tensor −〈T R
cc(r)〉QQ̄

and the energy density−〈T R
44(r)〉QQ̄ with three QQ̄ distances R= 0.46,0.69,0.92 fm [25]. From the

figure, one finds several notable features. First, approximate degeneracy 〈T R
44(r)〉QQ̄ ' 〈T R

zz (r)〉QQ̄

as well as 〈T R
rr (r)〉QQ̄ ' 〈T R

θθ
(r)〉QQ̄ is found for a wide range of r and R. Second, a nonzero value

of the trace of EMT 〈T R
µµ(r)〉QQ̄ = 〈T R

44(r)+T R
zz (r)+T R

rr (r)+T R
θθ
(r)〉QQ̄ < 0 is observed, which

suggests the partial restoration of the scale symmetry broken in the YM vacuum. Finally, the radius
of the flux tube, typically about 0.2 fm, seems to become wider with increasing R.

7
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Figure 7: R dependence of the QQ̄ forces, −Fstress and −Fpot, obtained by the Wilson loop and the stress
tensor, respectively. Error bars and rectangular boxes for the latter represent the statistical and systematic
errors, respectively [25].

Next, we consider a non-trivial consistency check for the uniqueness of the force [25]. The
force acting on the charge located at z > 0 can be obtained by two different manners; (i) through
the QQ̄ potential V (R) as

Fpot =−dV (R)/dR (5.5)

and (ii) from the surface integral of the stress-tensor surrounding the charge,

Fstress =−
∫
〈Tz j(x)〉QQ̄ dS j. (5.6)

For Fpot, we use the numerical data of V (R) obtained from the Wilson loop at a = 0.038 fm. For
Fstress, we take the mid-plane for the surface integral: Fstress = 2π

∫
∞

0 〈Tzz(r)〉QQ̄ rdr. In Fig. 7,−Fpot

and −Fstress thus obtained are shown by the solid line and the horizontal bars, respectively [25].
The figure shows agreement between the two quantities within the errors, which is a first numerical
evidence that the “action-at-a-distance” QQ̄ force can be described by the local properties of the
stress tensor in YM theory.

6. Analysis of QQ̄ system in Abelian-Higgs model

Finally, let us investigate the behavior of Tµν(r) in Fig. 6 in more detail especially focusing on
the approximate degeneracy and separation of each channel, Trr(r)' Tθθ (r)< Tzz(r) [27].

First, from the momentum conservation, ∂iTi j = 0, one can show that the EMT in the cylin-
drical coordinates Eq. (5.4) satisfies ∂r(rTrr)− Tθθ + r∂zTrz = 0. Then, by further assuming that
the flux tube is sufficiently long so that it has a translational invariance along the z direction, the z
derivative vanishes and one obtains,

∂r(rTrr) = Tθθ . (6.1)

From this differential equation it is concluded that Trr(r) and Tθθ (r) are not degenerate except for
the case Trr(r) = Tθθ (r) = 0. Moreover, by integrating out both sides of Eq. (6.1) by r and using
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Figure 8: EMT distribution around the infinitely-long vortex in AH model [27].

the boundary conditions rTrr(r)→ 0 for r→ 0 and r→ ∞, one obtains∫
∞

0
drTθθ (r) = 0, (6.2)

which means that Tθθ (r) must change the sign at least once. Such behaviors of Trr(r) and Tθθ (r),
however, are not observed in Fig. 6 even at the largest QQ̄ distance. It is therefore suggested that
the finite-length effect of the flux tube is not negligible even at R = 0.92 fm in SU(3) YM theory.

Next, in order to get ideas on physics behind the results in Fig. 6 we study the EMT distribution
in a specific model. For this purpose, here we employ the Abelian-Higgs (AH) model

LAH =− 1
4g2 F2

µν + |Dµ χ(x)|2−λ (|χ(x)|2− v2)2, (6.3)

which is the relativistic extension of the Ginzburg-Landau model, with the field strength Fµν =

∂µAν(x)− ∂νAµ(x) and the covariant derivative Dµ = ∂µ + iAµ(x). The AH model has classical
solutions with a static magnetic vortex. When this model is viewed as an effective model of QCD
according to the dual-superconductor picture [28], the vortex solution is considered as an analogue
of the flux tube in YM theory. In the following, we thus study the EMT distribution around the
classical vortex solution of Eq. (6.3) with the winding number n = 1. [27]

We first consider the EMT distribution around an infinitely-long and straight vortex. In Fig. 8,
we show the EMT in cylindrical coordinates on the cross section of the vortex as a function of
radius r. Three panels show the results for different values of the Ginzburg-Landau parameter
κ =
√

λ/g. From the figure, one finds that Trr(r) and Tθθ (r) have a clear separation except with
κ = 1/

√
2 at which Trr(r) = Tθθ (r) = 0. This separation is a model independent feature anticipated

from the momentum conservation Eq. (6.1).
Next, we investigate the vortex with finite length R. In AH model, the magnetic vortex

with boundaries is obtained by inserting two magnetic monopoles with a unit charge but oppo-
site signs [29]. Shown in Fig. 9 are examples of the EMT distribution on the mid-plane between
two monopoles [27]. The physical dimension in the figure is introduced by setting the energy den-
sity per unit length of the infinitely-long vortex to be the string tension obtained on the lattice. The
model parameters are chosen so that the values of Tcc(r) at r = 0 are approximately consistent with
the lattice result in Fig. 6 after setting the length R to be equivalent with the QQ̄ distance in the
lattice simulations. The figure shows that the difference between Trr(r) and Tθθ (r) becomes small
compared to Fig. 8. More detailed analysis on the absolute values of Tcc(r) at r = 0 shows that a
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Figure 9: EMT distribution on the mid-plane between two magnetic monopoles for three different values of
the distance between the monopoles R.

wide parameter range in the AH model is excluded by requiring that the values in the AH model
reproduces the lattice result [27].

7. Summary and outlook

In this proceeding, we reviewed recent attempts to perform the measurement of EMT on the
lattice with the gradient flow and its applications to thermodynamics, correlations, and the stress-
tensor distribution inside the flux tube. All these results show that EMT is successfully analyzed in
lattice simulations with a reasonable statistics.

Now that the analysis of the EMT on the lattice is established, there are many further ap-
plications, as EMT is one of the most fundamental observables in physics. For example, it is
quite interesting to extend the study of the flux tube to nonzero temperature, multi-quark systems,
and excited states. It is also an interesting future study to analyze the EMT distribution inside
hadrons [30, 31, 32] using the gradient flow method.

This work was supported by JSPS KAKENHI No. JP17K05442. Numerical simulation was
carried out on IBM System Blue Gene Solution at KEK under its Large-Scale Simulation Program,
Reedbush-U at the University of Tokyo, and OCTOPUS at Osaka University.
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