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1. Motivation

With the advent of modern high energy collider facilities, be it RHIC at BNL or the LHC
at CERN, high energy physics is able to tap into vast amounts of empirical data. On the other
hand high-performance computing has made possible the computation and prediction of many
phenomenologically relevant quantities from first principles (e.g. hadron masses [1] and thermo-
dynamics [2, 3]) . Concurrently phenomenology has progressed in constructing more and more
refined models, take for example the treatment of the dynamical evolution of a heavy-ion collision
(HIC), which allows us to reproduce many features observed in experiment (for an introduction see
e.g. [4]). Making these three treasure troves mutually accessible using efficient methods of sta-
tistical inference, in part supported by rapidly developing technologies such as machine learning,
is a central goal for theoretical physics in the 21st century. As one of the first high-energy theory
conferences, ConfXIII hosts a full session1 dedicated to this topic.

Bayesian statistics and inference based upon it is one particularly useful piece in the arsenal
available to the avid physicist in approaching the challenge of distilling novel physics insight from
empirical and simulation data. For those interested in joining this field [5, 6] can serve as a first
starting point.

The intention of this talk is to contribute towards demystifying the concept of Bayesian statis-
tics and to provide two concrete examples, where it has helped improve our understanding of
strongly interacting matter and QCD.

2. Bayesian inference

Domain 

knowledge 

(I)

generates

Unknown 

Process 
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Figure 1: Generic setup for statistical inference. Bayesian inference explicitly acknowledges that a model
of the unknown process is embedded in a domain to which prior knowledge I exists.

Let me start with a very general scenario (see Fig.1), where we are observing some unknown
process generating data yk. This may be an experimental setup or a simulation based on Monte-
Carlo sampling. The central goal of statistical inference now is to draw conclusions about unob-
served quantities, based on that empirical data. What we mean by unobserved quantities are on the
one hand the unknown parameters of the generating process θi and on the other hand future, i.e. as
of yet unobserved data ỹl .

Bayesian inference is a particular form of statistical inference, which uses a generalized con-
cept of probability. Probability in the Bayesian sense is understood as a measure of uncertainty
and does not need to be directly related to a large number of repeatable trials. The flexibility of the

1ConfXIII - Statistical Methods for Physics Analysis in the XXI Century session
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Bayesian approach may be glimpsed when considering the question: What is the chance of the first
launch of the new Ariane 6 rocket to succeed. Bayesian statistics sets out to answer in the form of
a probability statement. At first it may seem an improper task, as we cannot base our answer on a
large number of trials of first launches (not to mention the economic difficulty).

However whenever we describe a process in nature, we are forced to model it using the lan-
guage of physics and mathematics. Such a model in turn exists within the context of the process
of interest, in this case aerospace engineering. And of course there exists prior domain knowledge
I that informs our model. E.g. engineers have tested individual components of the Ariane rocket,
such as valves, for their reliability using e.g. frequentist approaches. As we shall see, Bayesian
statistics asks us to explicitly state what the uncertainties of or model parameters are and helps us
propagate these uncertainties into the final answer in the language of a generalized probability.

The starting point for Bayesian inference is the joint probability distribution of the involved
quantities p(θ ,y, I). Constructing it can be a formidable task, as it requires knowledge about the
data generating process and the physics context it is embedded in. Using the rules for conditional
probabilities we may reexpress p(θ ,y, I) to give way to Bayes theorem

p(θ |y, I)
posterior

= p(y|θ , I)
likelihood

p(θ |I)
prior

/ p(y|I)
evidence

, (2.1)

whose parts are straightforwardly matched to our problem at hand. The likelihood encodes how
probable it is that a datapoint y has been generated from a process with fixed set of parameters θ .
The prior probability on the other hand tells us how probable it is that a certain set of θ parameters
arises from our prior domain knowledge. The evidence (its name is simply a historic convention)
enters as a normalization factor independent of the parameters θ .

To the frequentist scholar the prior probability might be a stumbling block, so let us have a
closer look. In the literature p(θ |I) is often parameterized using two quantities, the default model
m and a weight α . The former refers to the extremum of the prior ∂θ p(θ |I)|θ=m = 0 while α de-
notes an overall weight factor p(θ |I) = exp(αP(θ |I)), i.e. they take the role of a hyperparameter.
Bayesian statistics now forces us to make explicit the parameters of the prior in the joint prob-
ability distribution p(θ ,y,m,α). In modern approaches to Bayesian statistics one acknowledges
that model parameters themselves carry uncertainties, so that we must endow both m and α with
distributions of their own, so called hyperpriors p(m) and p(α). This is the simplest form of a so
called hierarchical model in which successive layers inform us about the interdependencies and
uncertainties of the parameters entering our model.

Once the prior and posterior have been determined we are able to close in on the central task
of Bayesian inference, to compute (or more likely numerically estimate) the posterior distribution,
which provides access to

pMP(θ j|y, I) = Πi6= j

∫
dθi p(θ |y, I), pPP(ỹ|y, I) =

∫
dθ p(ỹ|θ , I)p(θ |y, I), (2.2)

the marginal posterior pMP(θ j|y, I) and the posterior predictive distribution pPP(ỹ|y, I). The former
constitutes the final say of Bayesian inference on how probable a certain parameter of our unknown
process is given the observed data and prior knowledge. The latter is valuable for assessing the
validity of the inference, as its predictions for future measurements can be compared against actual
collected data.

2
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At this point I would like to stress that in its modern incarnation Bayesian inference does not
suffer from what is often called subjectivity in the literature. We have seen that prior knowledge is
nothing more than domain knowledge with the appropriate uncertainties encoded via hyperpriors.

What makes the Bayesian approach very efficient is the fact that once new measurements y′

become available they are easily incorporated in an updated analysis using the old posterior as the
new prior p(θ |y′,y, I) ∝ p(y′|θ , I)p(θ |y, I). Obviously knowledge of the full posterior probability
p(θ |y, I) is needed in this case.

The past decades have seen major progress in the application of Bayesian statistics, often due
to improved computational capabilities. Among them is the consistent adaption of priors aris-
ing from genuine domain knowledge and not from to computational convenience (i.e. a liberation
from conjugate priors). The use of multi-layered hierarchical models nowadays allows us to self-
consistently incorporate the full inter dependencies and uncertainties of model parameters. Last
but not least, the availability of powerful numerical libraries based on Monte-Carlo techniques has
made it possible to straight forwardly sample the full posterior distribution instead of settling for
just determining its extremum (maximum aposteriori, MAP) as was often the case in the older
literature.

Indeed a full Bayesian analysis today is only one download away with e.g. the MC-STAN
library2 [7]. This software, maintained and supported both by scientific organizations, such as the
Max-Planck Society, as well as industry in the form of Google, provides a high level language to
formulate hierarchical models and to evaluate their posterior via an efficient Hamiltonian (hybrid)
Monte Carlo sampler (No-UTurn).

After having briefly gone through the main ingredients to Bayesian inference let us continue
by considering two concrete examples where Bayesian thinking has proven insightful in the context
of QCD.

3. Applications to QCD

3.1 Lattice QCD spectral function unfolding

The topic discussed in this subsection falls into the category of inverse problems that come in
the form of an unfolding task. Extracting from the readings of a detector the actual trajectory of a
charged particle (see related contributions [8, 9]), as well as the extraction of spectral functions in
lattice QCD simulations (see related contributions [10, 11, 12, 13]) are but two examples.

The starting point is to consider how our data is obtained, i.e. how to formulate the likelihood.
In both cases the observed data~y (track in detector, simulated correlation function) is related to the
actual quantity of interest ~x (actual track of particle, spectral function) via a linear transformation
~y = K̂~x+~η . The kernel K represents the imperfections of the detector or is a manifestation of
Euclidean quantum field theory. It may be obtained from e.g. detector simulations or in the case of
lattice QCD correlators from QCD directly. In both experiment and Monte-Carlo simulations the
data carry a finite precision, which may be captured by an additive noise term ~η . In a lattice QCD
simulation it often turns out to be Gaussian distributed, which leads to a likelihood that itself is of

2Thanks go out to N. Wink from Heidelberg for bringing this library to my attention

3
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Gaussian form

p(y|x) ∝ exp
[
(y−Kx)2/2σ

2]. (3.1)

Here σ denotes the uncertainty in the input data y. Of course in a real-world detector setup the type
of noise may differ significantly.

If we were to attempt a simple χ2 fit of~x from the data~y, it would correspond in the language of
Bayes to setting the prior probability to unity and determining the maximum of the corresponding
posterior. This is what is known as a maximum likelihood estimate. The difficulty of inverse
problems lies in the fact that they are often ill-posed, so that the maximum of the likelihood is not
unique and further regularization of the problem is required.

Take the task of reconstructing spectral functions from lattice QCD simulations as concrete ex-
ample [14]. Numerical simulations of strongly interacting matter on the lattice act very similar to a
very distorting detector setup. On the left in Fig.2 I have sketched a hadronic spectrum in vacuum
in gray, where we see two well defined bound states and a continuum structure at higher frequen-
cies. In a lattice QCD simulation, which is carried out in an artificial imaginary time direction,
this spectrum is translated into a Euclidean correlation function, plotted on the right in blue. The

ρ(ω)

ω

J/ψ ψ‘

D/D thresh.

T~0

Log[D(τ)]

τ

τ∈
[0

,1
/T

]

x,y,z

T>0

Figure 2: Translating a physical hadron spectral function into a Euclidean correlator via lattice QCD.

kernel in this case (the example pertains to NRQCD [15] fermions) amounts to a Laplace transfor-
mation and thus is exponentially damped with frequency ω and Euclidean time τ . In vacuum and
in the presence of well separated peaks the bound states manifest themselves as well pronounced
exponential falloffs, indicated by the gray dashed lines on the right. This may allow an exponential
fitting procedure to reveal many of the vital properties encoded in such a correlator.

Once we move to finite temperature, which is where we wish to learn about QCD for heavy-ion
collisions, the spectrum will change significantly. In-medium bound states will show broad peaks,
some will already have melted or persist as a mere threshold enhancement of a much more dominant
continuum (solid orange line). This translates into a correlator where no more clear exponential
behavior is visible and which instead shows overall curvature. The most limiting aspect of the
Euclidean formulation of thermal field theory is that temperature and the length of the accessible
Euclidean time axis are inversely proportional, indicated by the orange correlator only reaching to
a much smaller maximum τ value.

The task at hand is to extract from the simulated correlators the spectral function, containing
the relevant physical information about hadrons at finite temperature. This inverse Laplace trans-
form is the classic ill-posed inverse problem, in particular, since the intricate structures present in

4
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the spectrum require us to discretize frequencies with many more bins Nω than we have simulation
data points Nτ .

D(τi) = Di =
Nω

∑
l=1

∆ωlexp[−ωlτi]ρl. Nω � Nτ , D∼ N(K̂~ρ,C) (3.2)

Thanks to the law of large numbers the correlator data Di are distributed according to a (correlated)
Gaussian distribution.

In order to provide a regularization in the Bayesian sense, we need to specify a prior probability
which will yield a well behaved, i.e. unimodal posterior. There are several proposals on the market
on how to construct such a prior. One proposal arises from what otherwise is known as TV regu-
larization [16], which in the language of Bayes can be recast as pTV(ρ|m,α) = Laplace[m,1/α].
Standard Tikhonov regularization [17] on the other hand is equivalent to pTk(ρ|m,α) = N[0,1/α]

and may be straight forwardly modified to actually take into account the values of the default model
pTk′(ρ|m,α) = N[m,1/α]. The statement that standard Tikhonov regularization does not introduce
a default model is incorrect, as it simply sets the values of the default model to zero, leading to the
phenomenon of parameter shrinkage.

The most popular choice to date is the Maximum Entropy Method (MEM) [18] with
pMEM(ρ|m,α) ∝ eSSJ , which employs the Shannon-Jaynes entropy SSJ(m,α) = α

∫ (
ρ − m

−ρlog[ρ/m]
)
dω . This prior is based on four axioms motivated from considerations of image

reconstruction. Contrary to the previous two proposals it actually enforces positivity, which is a
genuine piece of prior information in case of hadronic spectra in QCD. It has been argued that
the principle of maximum entropy which motivates SSJ leads this prior to favor smooth spectral
functions, an assertion which has however been proven incorrect [19, 20].

A recent addition to this collection of priors is the BR prior [21] pBR(ρ|m,α) = Gamma[α +

1,α/m] (abbreviated from Bayesian Reconstruction), which is also based on four axioms. In their
motivation however the one-dimensional reconstruction task takes center stage. Again positivity is
a vital ingredient. In addition the requirement of scale invariance plays a central role, which takes
care of the fact that a spectral function (contrary to statements in the literature) is not in general
a probability distribution. (In particular hadronic spectral functions diverge with positive powers
of the frequency, as shown in perturbation theory.) From all the proposals so far the BR prior
imprints prior information in the most gentle fashion, while still leading to a unimodal posterior. A
generalization of the BR prior to non-positive spectral functions [22], encountered e.g. in the study
of parton spectra [23, 24] has also been put forward.

Once the prior is specified the standard procedure in the literature up to now is to compute
the maximum of the posterior (MAP) and declare this function the Bayesian answer to the most
probable spectrum, given simulation data and prior information. As long as the posterior is not
heavy tailed this is a valid strategy. (For the technical details on how the hyperparameter α is treated
in the different methods see [18, 21]). It turns out that the MAP solution may suffer from ringing
artifacts as long as local regulators, such as those in the MEM and BR method [19] are used. The
exploration of non-local regulators (see e.g. [19, 20]), which in the language of Bayesian statistics
correspond to correlated distributions among the different parameters ρl is work in progress.

Nowadays we are however not limited to the simple MAP estimate and can easily explore the
full posterior distribution using e.g. the MC-STAN framework. This also liberates us from some of

5
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the rather ad-hoc approximations deployed when handling the hyperparameter α e.g. in the MEM.
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Figure 3: Relevant parts of the
Bayesian analysis: input data
mean, histogram of D1, p(α),
p(ρmax|D, I), ρBayes, p(α|D).

Let me give a concrete example here using actual lattice
NRQCD correlation functions for the Bottomonium 3S1 state
Upsilon (data from [19]) to carry out a Bayesian reconstruction
with the BR prior.

We start by computing the Nτ means Di (see top panel of
Fig.3) of the Ndata correlator samples Dk

i (see 2nd panel in Fig.3
for Dk

1) and their correlation matrix Ci j =
1

Ndata(Ndata−1) ∑n(Dk
i −

Di)(Dk
j −D j) (note that this is the correlation matrix of the

mean with respect to the correct value Dtrue
i ). The relation be-

tween this data and the discretized spectral function is given by
eq.(3.2). For computational efficiency we can apply a coordi-
nate transformation on the kernel matrix K̂ and the data vector
~D to a basis in which the correlation matrix C is diagonal. Then
we may consider each D̃i as truly independently Gaussian dis-
tributed with an uncertainty given by the corresponding eigen-
value of C. This sets the likelihood of the problem.

Now we turn to the BR prior, to which we here for
simplicity supply a constant default model m = 1. In prac-
tice one can incorporate into m e.g. the large ω behavior
of the spectrum known from lattice perturbation theory. The
prior includes a hyperparameter α , whose values we do not
know apriori. This uncertainty we make explicit by using a
very broad half Gaussian distribution as hyperprior p(α) =

HalfNormal[0,10] (3rd panel of Fig.3). For α = 10 the prior
should already fully dominate the posterior. This is all that is
necessary to set up the MC-STAN model which reads

stan_model_BR = """

data {

int sNt; // # of tau input data

int sNw; // # of rho bins

matrix[sNt, sNw] Kernel;

vector[sNt] D; // simulation data

real<lower=0> ConstDM; // default model

vector[sNt] Uncertainty; // corr. error

}

parameters {

vector<lower=0>[sNw] rho;

real<lower=0> alpha; // Hyperparameter

}

model {

alpha ~ normal(0, 10); //hyperprior

6
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rho ~ gamma(alpha+1, alpha/ConstDM);

D ~ normal(Kernel * rho, Uncertainty);

}

"""

These lines are all that is needed to specify a full Bayesian analysis. Using Nω = 1000 frequency
bins with Nτ = 32 and running with 40 MC chains of 2500 iterations each (500 warmup steps) we
obtain a well defined histogram for each of the marginal posteriors p(ρl|D, I) (4th panel in Fig.3 for
the maximum ρl). Via their mean a highly accurate image of the encoded spectral function emerges
(panel 2nd from bottom in Fig.3). Note the dominant peak, which corresponds to the exponential
falloff in the correlator.

Since we here treated α as one of the parameters of the joint probability distribution we may
actually learn self-consistently, how strongly the regulator affects the posterior by looking at the
marginal posterior p(α|D) shown in the bottom panel of Fig.3.

Even if the implementation of a Bayesian analysis nowadays is straight forward several con-
ceptual challenges remain. One is related to the question of the information content within the
lattice QCD correlation functions. Especially at T > 0 the finite Euclidean time extend limits the
accuracy of the reconstruction and going to the continuum limit does not remedy this issue (for a
recent discussion see [19, 25]). The question to answer is how to set up simulations to improve
the relevant information content. Possible strategies involve going to anisotropic lattices or more
exploratory routes, such as attempting to generalize the multi-level algorithm to full QCD [26] or
to explore modified time contours in the complex plane [25].

The other challenge is how to incorporate analytic properties of the spectra and correlators
into the regulator. Current priors use mostly concepts unspecific to QCD, e.g. smoothness. On the
other hand analytic properties may be treated by introducing e.g. restricted sets of basis functions
among which to select the MAP [23]. This however is not Bayesian in nature, where prior informa-
tion must be provided in terms of a functional or correspondingly a probability distribution. One
possible strategy is to deploy machine learning to construct an appropriate regulator from prior
knowledge, which is work in progress.

3.2 Quark-gluon-plasma parameter estimation

The second example of Bayesian inference in QCD connects the progress made in the ex-
perimental investigation of heavy-ion-collisions with that of phenomenologically modelling the
dynamical evolution of the bulk matter created therein. Its physics goal is to generate new insight
into the properties of the quark-gluon-plasma.

Over the past decade a standard model of HICs has emerged whose success rests on chaining
together several effective descriptions of the physics relevant at different stages of the collision.
It starts from fluctuating initial conditions, modern incarnations of which are based on classical
statistical simulations of Yang-Mills fields. These smoothly connect via kinetic theory to a de-
scription of the bulk matter in terms of viscous relativistic hydrodynamics that in turn terminates
at hadronization, where hadronization models connect to transport models for the hadronic phase.
At the same time highly precise measurements of the yields and correlations among light hadrons
(e.g. harmonic flow) have been obtained in experiment.

7
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It is natural to ask how statistical inference can help us identify the most probable values for
the parameters entering the phenomenological models of HICs by employing Bayesian reasoning.
We here follow the strategy laid out in the first [27] in a series of studies [28] approaching this
question in a genuinely Bayesian fashion (see related contribution [29]). The problem at hand is
well suited for Bayesian statistics as we have to deal with many sources of uncertainties, stemming
in part from finite precision in theory input, such as e.g. in the equation of state of QCD obtained
from lattice QCD. On the other hand one is faced with e.g. parametrization choices for quantities,
such as the specific viscosities, since no theory consensus has been reached on their temperature
dependence so far. The one uncertainty that is not part of such an analysis is the one related to
the range of validity of the deployed models themselves, i.e. it cannot be quantified in how far
e.g. viscous hydrodynamics is an appropriate description of the intermediate time evolution of the
QGP.

The authors of [27] choose nine parameters among all model parameters which are left free and
fix all others using best estimates from the literature. While strictly speaking this does not amount
to a fully Bayesian approach it is a very important first step into the direction of an urgently needed
comprehensive Bayesian parameter estimation. The free parameters come in two groups, one re-
lated to the initial conditions containing four quantities: p entropy deposition, k shape fluctuations,
w Gaussian nucleon width and a normalization. The other five parameters are genuine QGP prop-
erties: Tswitch hadronization temperature, η/SHRG specific viscosity in the hadronic phase, η/Smin

minimal specific viscosity at Tswitch, the slope of the specific viscosity modeled as linear increasing
function of T and ζ/S the magnitude of the specific bulk viscosity.

Given these 9 input parameters θi the chain of models is able to produce a plethora of simulated
data ysim, such as yields dNπ/dy or v2 for different centrality bins which may then be compared to
experimental measurements. Bayes theorem in this case then takes the form

p(θ |yexp) ∝ p(yexp|θ)p(θ), (3.3)

where we have suppressed the dependence of the likelihood and posterior on the choice of models
used.

The main focus in the following lies on how to efficiently describe the likelihood p(yexp|θ) in
this problem for which [27] deploys a technique that is well established in the realm of machine
learning: Gaussian processes. An introduction to the general topic can be found in [30].

The challenge lies in the fact that to exhaustively sample the posterior we need to evaluate
the likelihood for a very large range of parameter values. At the same time the computational cost
involved in running the chain of models prevents us from doing so in any reasonable time frame.
In order to overcome this limitation, Gaussian processes provide a strategy of how to efficiently
estimate the true likelihood based on a small number of simulated training data sets. The starting
point is to regard the simulated data ysim as distributed according to a correlated Gaussian, where
the non-trivial information is contained in a usually dense correlation matrix Σ. The corresponding
likelihood then also takes the form of a correlated Gaussian

p(yexp|θ)≈ exp
[
− (ysim(θ)− yexp)Σ

−1
GP(ysim(θ)− yexp)

]
. (3.4)

8
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As preparatory step one carries out full model computations on a set of O(100) model parameter
sets θtrain distributed for efficiency on a Latin hypercube. These will serve as training data ytrain for
the Gaussian process.

Our goal is to set up an approximate Gaussian distribution for ysim(θ) which is fully specified
by its mean m(θ ,θtrain) and its correlations K(θ ,θtrain) interpolating between the values θtrain. The
starting point is to assume that the training data belongs to the same Gaussian distribution from
which we will draw our estimates ysim(θ) for some other parameter set(

ytrain

ysim

)
= N

(
m(θ)

m(θ ,θ ′)
,

K(θtrain,θtrain) K(θtrain,θsim)

K(θsim,θtrain) K(θsim,θsim)

)
. (3.5)

All the important information resides in the model correlation functions K, which we here take to
also have Gaussian form. This is a particular choice and independent from the Gaussian character
of the joint probability distribution

K(θk,θ
′
l ) = σ

2
GPexp

[
−

(θk−θ ′l )
2

2l2

]
+σ

2
n δkl. (3.6)

We have three hyperparameters in this model, σGP specifying the strength of correlation among
the training data, the correlation lengths lk characterizing the distance between parameters and σn

related to the uncertainty of the ytrain’s. It is the values for these, which we need to fit using the
training data.
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Figure 4: (top) Validation of the
Gaussian process model using ex-
perimental data (bottom) specific
shear viscosity estimate from the
posterior (figures taken from [27])

Using p(z|x) = p(x,z)/
∫

dzp(x,z) we then arrive at
the conditional probability for our estimated ysim as
p(ysim(θ)|ytrain) = N(µGP(θ),ΣGP(θ)) with expressions for

ΣGP = K(θ ,θ)−K(θ ,θtrain)−K(θtrain,θtrain)
−1K(θtrain,θtrain),

µGP = m(θtrain)+K(θ ,θtrain)K(θtrain,θtrain)
−1(ytrain−m(θtrain)).

I.e. we now are in possession of a means to quickly draw an
approximate ysim to be used in eq.(3.4) together with the ap-
propriate correlation function ΣGP.

Before we deploy the Gaussian process let us make sure
that the approximation made so far is not too simplistic and
manages to capture the relevant physics encoded in ytrain. To
this end one can evaluate the full model computations at a new
set of parameters and compare those to the predictions. As
shown in the top panel of Fig.4 the correlation between pre-
diction and actual values is excellent, the values scatter tightly
along the diagonal.

The last missing piece to the Bayesian analysis is to spec-
ify the prior distribution. Here the authors resort to uniform
distributions for the parameter values setting the upper and lower limits large enough so that the
relatively large uncertainty e.g. in the specific viscosities (gray shaded region in Fig.4 bottom
panel) is well represented. Combining these together with the likelihood we constructed before al-
lows us to systematically interrogate the experimental data and infer the most probable value of the
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parameters (blue line in bottom panel of Fig.4) accompanied by a significantly reduced uncertainty
band.

4. Conclusion

In this contribution my goal has been to argue that Bayesian inference provides a flexible
approach to extract insight from empirical data based on the consistent application of Bayes theo-
rem. In the introductory part I showed that in its modern incarnation Bayesian statistics does not
suffer from subjectivity, as prior information is understood as domain knowledge informing our
modelling with the appropriate uncertainties properly encoded in hyperparameters of hierarchical
models. With the availability of efficient and open source Monte-Carlo samplers no more hurdles
exists to embark on an exploration of the full posterior distribution of such realistic hierarchical
models.

I presented two concrete examples, where Bayesian inference helps us in furthering our under-
standing of strongly interacting matter. The first is the extraction of lattice QCD spectral functions,
which is an ill-posed inverse unfolding problem similar to the unfolding of detector tracks. Here
the main challenges reside in the design of improved prior distributions that incorporate analytic
properties of the spectra known from QCD, where machine learning may play an important role in
the near future. At the same time there exists the need to improve the information content of simu-
lated correlators. The use of anisotropic lattices or exploring more unconventional strategies, such
as extensions of the multilevel algorithm to full QCD or deformed temporal paths in the complex
plane are currently being considered. The second example concerned the estimation of model pa-
rameters for the QGP from a systematic comparison with experimental measurements from HICs.
The central focus there lay on the efficient sampling of the likelihood, which was achieved by use
of a Gaussian process model.

This talk is only able to scratch at the surface of the many fascinating ways how (Bayesian)
statistical analysis can help us push forward the boundaries of our knowledge of strongly interacting
matter. The interested reader is cordially invited to peruse the many other contributions to this
conference in the realm of statistical methods and machine learning located in the corresponding
dedicated session.
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