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1. Introduction

The new phenomenon of the quark-gluon plasma (QGP) was predicted in [1], and its properties
were soon measured on the lattice [2]. Nowadays the QGP is an important stage in the heavy-ion
collisions is widely recognized as see e.g. [3].

Recent accurate lattice calculations [4, 5] show that the QGP demonstrates non-trivial behavior
due to the strong nonperturbative (np) interaction during the phase transition and beyond it. Field
Correlator Method (FCM) was originally formulated in [6] makes it possible to include np effects
in a consistent way with so-called vacuum field correlators. The deconfining phase transition in
FCM approach is associated with the vanishing of the color-electric (CE) correlator DE , and an
another np correlator DE

1 provides the Polyakov loop potential [7]. Recently another important
ingredient of the np interaction in the region T > Tc was taken into account – the color-magnetic
(CM) confinement which is defined by the spatial projection of the Wilson loop and by the np
correlator DH . In [8, 9, 10] this theory was fully investigated in the case of SU(3) and zero-density
compared to the accurate lattice data [4, 10], showing a good agreement for p(T ) both below and
above Tc, and also in the character of transition. Meanwhile the region of nonzero density is of
the outmost importance. The existing and planned heavy ion collision experiments badly need the
corresponding theoretical calculations of the QGP properties at nonzero µ , whereas the lattice data
are not directly available in this region at the moment due to sign problem. FCM approach to the
case of the finite density was formulated in [11], see also [10, 12] for a review, where in the QGP
only the Polyakov line interaction was taken into account, and the whole temperature transition
curve in the µ−T plane was found.

It is the purpose of the present paper to incorporate in our calculations of np thermodynamics
for finite density the effects CM confinement and produce the function of pressure p(T,µ), in the
temperature interval 0.2< T < 1.0 GeV. It is also interesting to investigate the properties of p(T,µ)
in the whole complex plane of µ and to compare with the known lattice information.

2. Equation of state for the quark-gluon plasma

We are using below the same gauge and relativistic invariant formalism, based on the path
integral formalism, which was formulated in [6, 7], and exploited in the SU(3) case in [13]. The
basic interaction of a quark or a gluon can be expressed via world lines affected by the vacuum
fields and finally written in the form of Wilson–lines and loops averaged over the background field.

As was mentioned in the Introduction, two basic interactions define the quark and gluon dy-
namics in QGP beyond the phase transition: the colorelectric (CE) one, contained in the Polyakov
line L(T ), and the colormagnetic (CM) interaction in the spatial projection on the Wilson loop. The
CE part is expressed via the np part of the CE field correlator DE

1 (τ), while perturbative part of D1

yields color Coulomb potential. The CM part is defined by the CM field correlator DH(z), yielding
the spatial string tension σs(T ) = 1

2
∫

DH(z)d2z. It was shown in [14] that σs(T )∼ g2(T )T 2 and is
important in the whole region T ≥ Tc.

Using the path integral formalism with periodic boundary conditions, one can express the
thermodynamic potentials via the Wilson loop integral, e.g. for the gluon pressure one has [14, 9]
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Pgl = 2(N2
c −1)

∫
∞

0

ds
s ∑

n=1,2...
G(n)(s), (2.1)

where G(n)(s) is the winding (Matsubara) path integral in Feynman-Fock-Schwinger representation

G(n)(s) =
∫
(Dz)w

one−K〈t̂raW (Cn)〉. (2.2)

Here W (Cn) is the Wilson loop defined for the gluon path Cn, which has both temporal (i4) and
spatial projections (ij). It is important, that the CE and CM field strengths correlate very weakly
〈Ei(x)Bk(y)Φ(x,y)〉 ≈ 0 [7] and therefore one can factorize CE and CM interactions in the W (Cn)

[9]

〈traW (Cn)〉= L(n)
adj(T )〈W3〉. (2.3)

Statement (2.3) leads to the same factorization for the Green’s function G(n)(s)

G(n)(s) = G(n)
4 (s)G3(s); G(n)

4 (s) =
∫
(Dz)w

one−KL(n)
n =

1
2
√

4πs
e−n2/4T 2sL(n). (2.4)

where the temporal projection G(n)
4 (s) is defined by the Polyakov loop interaction L(n). As shown in

[7, 12], L(n)
adj
∼= (Ladj(T ))n for T <∼ 1 GeV, and Ladj(T ) = exp

(
−9V1(∞,T )

8T

)
. According tp [9], then the

resulting Ladj(T ), which is close to the lattice measurement values, yields realistic thermodynamic
potentials. As a result, one can write the resulting expression for the gluon pressure

Pgl =
N2

c −1√
4π

∫
∞

0

ds
s3/2 G3(s) ∑

n=0,1,2...
e−

n2

4T 2s L(n)
adj . (2.5)

In case of the linear CM confinement, the spatial projection G3(s) could be calculated analytically
[9]

Glin
3 (s) =

1
(4πs)3/2

√√√√ (M2
adj s)

sinh(M2
adj s)

, (2.6)

where Madj ∼= 2MD ∼ 4
√

σs is defined by the spatial string tension and is proportional to the gluon
Debye mass MD. Spatial string tension grows rapidly with temperature, i.e. σs ∼ g2(T )T 2, provid-
ing an effective damping for the pressure. Due to this effect, the QGP pressure never reaches the
Stefan-Boltzmann limit. This behavior is in agreement with the current lattice data from [15].

The same FCM technique could be reproduced for quarks in fundamental representation fol-
lowing [7, 11], but augmented by the quark mass term e−m2

f s and the density term cosh µn
T .

Pq = ∑
mq

P( f )
q , P( f )

q =
4Nc√

4π

∫
∞

0

ds
s3/2 e−m2

f sS3(s) ∑
n=1,2,..

(−)n+1e−
n2

4T 2s cosh
(

µn
T

)
Ln

f . (2.7)

Here S3(s) is, similarly to G3(s), the 3d quark Green’s function, which has the same form as
(2.6) with the relation M2

adj =
9
4 M2

f .
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3. Properties of the equation of state at finite density

The full pressure for the QGP is P(T,µ) = Pgl(T )+Pq(T,µ), where Pq(T,µ) is given in (2.7).
In previous Section we have used the linear potential for the CM confinement to obtain the spectral
representation of the spatial Green’s function (2.6). In the case of the arbitrary CM interaction one
has the most general spectral representation for S3(s) is [9]

S3(s) =
1√
πs ∑

ν=0,1
ψ

2
ν(0)e

−m2
ν s, (3.1)

with the corresponding eigenvalues mν and wave functions ψν . The P( f )
q acquire the form

P( f )
q

T 4 =
8Nc

πT 3 ∑
ν

ψ
2
ν(0)M̄ν ∑

n

(−)n+1

n
K1

(
nM̄ν

T

)
Ln cosh

µn
T

, (3.2)

where the damping masses are M̄2
ν = m2

f +m2
ν . Summing over the Matsubara frequences one can

write down the result

P( f )
q

T 4 =
8Nc

πT 4

∞

∑
ν=0

ψ
2
ν(0)M̄

2
ν

∫
∞

0
sinh2 t dt

1
2

(
α+

1+α+
+

α−
1+α−

)
, (3.3)

with α± = exp
{
− M̄ν

T cosh t− V1
2T ±

µ

T

}
. One can see that there is a set of singularities for the

pressure in a complex µ-plane, shown in Fig. 1. To this end we are writing µ

T in the neighborhood
of the point in Fig. 1 with imaginary and real parts iπ and µR

T respectively as

µ

T
= iπ +

Mν +V1/2
T

+
Mν

T
y. (3.4)

Note, that for the prefactor of the exponent α± in (3.3) be equal to (−1) the imaginary part of µ

should equal
µI

T
=

π

3
(2n+1), n = 0,±1,±2, ... (3.5)

This situation may explain the appearance of the Roberge-Weiss singularities [16], see [17], [18]
for a physical and numerical analysis. The integral (3.3) as a function of y is proportional to the
function f (y),

f (y) =
∫

∞

0

t2dtF(t)
t2−2y+O(t2y, t4y2)

, (3.6)

where we have separated the region of small t, contributing to the singularity, and F(t → 0) =
const. One can easily see in (3.6), that f (y) has a square root singularity near y = 0 and the cut
Rey≥ 0, with the discontinuity

f (y+ iδ )− f (y− iδ ) = i
√

2yF(
√

2y). (3.7)

Note, that the branch points y = 0 occur for every Mν ,ν = 0,1,2, ... and this situation is similar to
the two-body thresholds in the energy plane with ever increasing number of particles.
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Im µ/T

π

3T

π

T

Re µ/T(1) (2) (3)(4)(5)(6)

Figure 1: Roberge-Weiss singular points and cuts in the complex plane of µ . Points 1-6 are, respectively,(
V1
2T +

M0
T

)
,
(

V1
2T +

M1
T

)
,
(

V1
2T +

Mν

T

)
,−
(

V1
2T +

M0
T

)
,−
(

V1
2T +

M1
T

)
, and −

(
V1
2T +

Mν

T

)
. In the lower half plane

the points are mirror-reflected of the axis Re µ/T .

4. Results and discussion

In this section we present results of calculations for the total pressure

P(µ,T ) = Pgl(T )+ ∑
mq(i)

P( f )
q (µi,T ), (4.1)

where P(µ f ,T ) in general depends on the µ f for a given flavor. Below we consider the simplest
case of equal µ f = µ , where f = u, d, s, and the quark masses mu = md = 0, ms = 0.1 GeV. Pgl(T )
is given in Eq.(2.5) and is µ-independent in our approximation of no interaction between quarks
and gluons. We used the values ψν and Mν corresponding to the linear CM interaction to calculate
the Pf (T, µ). The resulting behavior of the P(T, µ)/T 4 is shown in Fig. 2 for µ = 0, 0.2, 0.4
GeV, where also the case of µ = 0 can be compared to lattice data [21]. One can see a reasonable
agreement with lattice data for µ = 0. Note, that for the Polyakov loop L f (T ) = exp(−V1(T )/2T )
we are using as in Eq. (2.5) and Eq. (2.7) the same values as in [13, 11, 12],with Lad j = (L f )

9/4,
namely

V1(T ) =
0.175GeV
1.35 T

T0
−1

, T0 = 0.16GeV (4.2)

in the interval 0.16GeV < T < 1GeV. The resulting values of L f (T ) are in the same domain
as the lattice data of [22] for T < 0.5GeV, while at higher T our L f is smaller due to necessary
renormalization, because of different definitions, see [23] for the discussion of this point. Also
there is a possibility of the µ-dependence of L f (T ), which can occur due to density dependence of
vacuum fields, as well as due to quark-quark interaction. In our approach at this stage we disregard
this dependence, which is partly supported by lattice data [24].
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Figure 2: The pressure P(T )
T 4 with M0 = 3.5

√
σs for µ = 0.0, 0.2, 0.4 (from bottom to top), empty squares

with error bars are for the lattice data from [21].

We have considered above the propeties of the QGP in the temperature interval 0.15GeV <

T < 1GeV and for the chemical potential µ = 0, 0.2 and 0.4GeV. We have taken into account
only the np part of interaction. The main reason for our choice of dynamics is the fact, that the CM
confinement and Polyakov interaction (V1(T )) are most strong in this region and moreover CM
confinement is growing with temperature.

We have analyzed the behavior of P(T, µ) up to µ = 0.4GeV and have not found any dis-
continuous effects in this area. It is seen in Fig.2 that the pressure has a smooth behavior, while
the peak in P(T, µ) appears at smaller T with increasing µ . It was checked, that the series over
n in Eq. (3.2) is convergent for these values of µ . At the same time we have studied above the
analytic properties of thermodynamic potentials in the complex µ plane and have found sequences
of branch points with cuts, going outwards, see Fig. 1. These singularities and cuts are dynamically
explained by the Polyakov line interaction V1(T ) and CM confinement eigenvalues Mν .

This work was done in the framework of the scientific project, supported by the Russian Sci-
entific Foundation, grant #16-12-10414.
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