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1. Introduction

The observation that the lowest lying mesons can be grouped in so-called Regge-trajectories
has lead to the formulation of the first string theories [1, 2] to describe the strong interactions. This
string picture even persists until today, after the introduction of Quantum Chromodynamics (QCD)
as the fundamental theory for the strong interactions, in terms of an effective string theory (EST) for
mesons and baryons. The basic idea is that, for large quark distances, the chromo-electromagnetic
field connecting the quarks is squeezed into a narrow, tube-alike region, a flux tube, via a dual
version of the Meissner effect. For a quark-antiquark (¢g) pair, i.e., a mesonic state, this is shown
schematically in Fig. 1. As soon as the width of
the flux tube becomes negligible compared to the
qq separation R, the flux tube effectively looks
like a thin energy string (also denoted as the con-
fining string in this framework) and its dynamics
is governed by stringy excitations described by
the EST. The resulting dominant term in the en- H enlarging R
ergy levels at large R is a linear term of the form

OR, where o is the energy per unit length of the q q
flux tube, known as the string tension. Conse-

quently, flux tube formation provides a heuris- Figure 1: Schematic picture of flux tube forma-
tic mechanism to explain quark confinement in  tion for a static ¢g pair.

QCD (see Ref. [3] for a review). In QCD with

finite quark masses, the flux tube persists only up to gg distances where the potential energy in the
system allows to create another ¢gg pair from the vacuum, leading to a state with two instead of one
mesons. This effect is known as string breaking (see Ref. [4] for a study in full QCD, for instance)
and it is the reason why quarks have not been observed as free particles in nature.

In the static limit, the energy of a gg pair at distance R is related to the static quark-antiquark
potential V(R). Similar potentials can also be defined for mesonic states with excited gluon con-
figurations carrying non-trivial quantum numbers. These potentials are, besides their relevance
concerning the anatomy of confinement, important for the theoretical description of heavy quarko-
nia and hybrid mesons.! To study these systems the availability of an analytic expression for the
potentials is important and the EST can provide valuable input.

Apart from these phenomenological applications, the EST provides a natural framework to
make contact with a possible 10-dimensional (10d) string theory dual to large-N gauge theories in
terms of a generalization of the AdS/CFT correspondence [8]. In principle, the EST action can be
computed from the 10d string theory by integrating out the additional massive modes (see Ref. [9]
and references therein). In terms of this correspondence the confining string can be visualized, as
shown in Fig. 2, as the 4d projection of the 10d string onto the boundary of the anti-de Sitter space,
associated with the spacetime of the gauge theory. When computed from the fundamental string
theory, possible non-universal parameters in the EST action are related to properties of the AdS side
of the duality. A particular example is the boundary coefficient b, introduced in the next section,
which, for certain holographic string backgrounds, can be related to the masses of the additional

ISee Refs. [5, 6] for reviews and Ref. [7] for a recent lattice study of hybrid mesons.
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Figure 2: Schematic picture of the projection of the 10-dimensional string in a generalization of the
AdS/CFT correspondence to large-N gauge theories onto the 4-dimensional boundary of the AdS space.
The boundary is associated with the spacetime of pure gauge theory.

bosonic and fermionic degrees of freedom of the fundamental string theory [10]. Knowledge about
the non-universal parameters in the N — oo limit can thus be converted into constraints for the
10d string theory in AdS spacetime and help to find suitable backgrounds for the gauge/gravity
correspondence of non-conformal gauge theories. See Refs. [11, 12, 13] for recent computations
of properties of flux tubes in this framework.

The energy levels of the flux tube and the associated potentials can be computed in pure gauge
theory on the lattice. A recent collection of results can be found in Ref. [14]. All of the results so far
have shown remarkable agreement with the predictions from the EST down to comparably small
values of v/OR =~ 1.2 —1.5. Note, that the EST, as an effective theory for long flux tubes, is expected
to break down at around \/GR < 1. In 4d, energy states of closed flux tubes have been found
recently [15] which are consistently described by massive modes on the string worldsheet [16, 17].
Open string states with a similar behavior have also been observed earlier [18]. The appearance
of such states is certainly expected, given the differences between the flux tube and a string. The
finite width of the flux tube may allow for inner vibrations and torsions, which could show up
as massive modes in the spectrum. A peculiar feature is the apparent absence of massive modes
in the 3d data. A theoretical explanation for this is the fact that the coupling term between the
massive mode and the Goldstone bosons does not exist in 3d. From the phenomenological point of
view, neither torsions nor the development of knots are possible, since there is only one transverse
direction. Thus the absence of the massive modes in 3d is plausible if the low lying massive modes
are related to either of these phenomena. In 3d we are left with vibration modes and contributions
due to the string rigidity. The latter has been first proposed by Polyakov [19] and recently found to
be essential to describe the potential in 3d U(1) gauge theory [20]. Rigidity contributions appear
at high orders in the 1/R expansion, but the presence of the rigidity term gives a non-perturbative
contribution to the potential [21, 22, 20]. Formally its contribution is similar to the one of a free
massive mode on the worldsheet (coupling to the Goldstone bosons only via the induced metric).

In this proceedings article I report on the progress concerning my studies [23, 24, 25, 26] of
the energy levels of the flux tube and their comparison to the EST in 3d SU(N) gauge theories for
N — oo. I will show continuum extrapolated results for the string tension (comparing also to the
Karabali-Kim-Nair (KKN) prediction [27]) and the boundary coefficient b, for N = 2 to 6, which
are then extrapolated to the large-N limit. b, is first obtained from an analysis excluding massive
modes or contributions from rigidity. In the second step we test whether such modes can be present,
how they change the value of b, and extract their mass.
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2. EST predictions and massive/rigid modes

The EST describes the dynamics of a stable non-interacting flux tube in terms of the quantized
transverse oscillation modes, the Goldstone bosons associated with the breaking of the translational
symmetry by the tube. The basic properties of the theory are known for some time [28, 29, 30] but
a number of features have only been elucidated recently (for reviews see [31, 14]). The spectrum
has been computed up to O(R) [32, 33],

2 1
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The leading order term, the first term on the right-hand-side, is the spectrum obtained from the
light cone quantization [34] of the Nambu-Goto string (LC spectrum). B!, and C!, are dimensionless
coefficients, depending on the representation of the state with respect to rotations around the string
axis (see [26]). The term proportional to b, is the leading order boundary correction (BC). For the
groundstate in 3d B) and C}) vanish, so that the BC is the only correction term up to O(R~®). b, has
previously been computed in 3d SU(2) [24] and Z(2) gauge theories [35].

In the energy levels of Eq. (2.1), possible contributions from rigidity or massive modes have
not been included. In 3d contributions from rigidity and massive bosons on the worldsheet are
formally equivalent. In {-function regularization and including higher order terms perturbatively,
the rigidity/massive mode corrections are given by [20]

m < Ki(2kmR)  (d —2)(d — 10)7?

VIE(R) = —— — . 2.2
(R) 2m & k 3840moR* (2:2)

Here m is the mass parameter, which is related to the rigidity parameter in case of a correction
originating from the string rigidity, and K; is a modified Bessel functions of the second kind. The
second term on the right-hand-side contaminates the BC term and thus changes the value of b,.
Note, that the {-function regularization scheme breaks Lorentz symmetry, so that counterterms
may need to be taken into account for a proper extraction of the energy levels [36]. From now on
we will always refer to the correction terms from Eq. (2.2) as “massive mode” contributions.

3. String tension and KKN prediction

We perform simulations in 3d SU(N) (N = 2 to 6) gauge theory using the standard mixture
of heatbath and overrelaxation steps. The potential is extracted from Polyakov loop correlation
functions, which are computed with one level of the Liischer-Weisz multilevel algorithm [37] for
error reduction. We used 20000 sublattice updates and temporal sublattice sizes ranging between 2
and 12. For more details and a study of systematic effects see Ref. [26]. For scale setting we use the
Sommer scale ryp = 0.5 fm [38], which may be used to translate to “physical” units. For each value
of N we have simulated at least 3 lattice spacings, keeping the spatial and temporal extents larger
than 107 to render finite size effects negligible. The potential has been extracted up to R/ro = 3
for all lattice spacings.
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Figure 3: Results for the string tension extracted from fits (i), 0(;), and (ii), 0(;), as explained in the text,
versus Rpin in units of ro for N = 3 (left) and 6 (right). The magenta bands are the values for o;) used in
the further analysis.
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Figure 4: Continuum results for /& (left) and the ratio rgxn (right) versus 1/ NZ. The curves are the large-
N extrapolations. The dashed line in the left plot labeled by ‘LC’ indicates the values of \/c7( obtained from
the full LC spectrum and the one labeled by ‘LO’ is the result from the expansion to O(1/R). The dashed
lines in the right plot are the results for rggn from [40] (red) and [41] (magenta).

We start by extracting the string tension ¢ in a way that we can control the effect of higher
order corrections. To this end we use of two different fits: (i) we fit the force (F(R) = dV /[dR]) to
the form R*F(R) = oR? +; (ii) we fit V(R) to the LC potential, adding a normalization constant
Vo. The fits include different terms of the 1/R expansion starting at O(1/R?), so that the results
will differ once corrections at this order become important. To isolate the asymptotic behavior, one
can thus investigate the dependence of the fit parameters on the minimal value of R included in
the fit, Ryiy. In the region where the results from the fits agree within errors and show a plateau
the estimate for ¢ from either of the methods will be reliable within the given uncertainties. Two
typical examples for the Ryin dependence of o obtained from the two fits, denoted as o;) and o;;),
respectively, are shown in Fig. 3. In the following we will always use the result o(;) obtained with
the value of Ry, where the results of the two methods become fully consistent (indicated by the
magenta bands in Fig. 3). We extrapolate /67y to the continuum including terms of O(a?) and
O(a*). The systematic uncertainty of this extrapolation is estimated by comparison to a fit for the
data with ry/a > 6, including only a term of O(a?). The continuum results for ¢ are shown in
Fig. 4 (left) versus 1/N?.
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Figure 5: Examples for the dependence of the exponent k on R, for N = 3 (left) and 5 (right).

To compare to the KKN prediction [27],
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the mean-field improved coupling [39], and the plaquette expectation value <U p>, we define
2
o
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where the denominator includes the lattice result. We compute the ratio in the continuum using a
continuum extrapolation of gﬁ,ﬂs in units of ry as for o with a> — a. The results for the ratio are
shown in Fig. 4 (right).

Finally, we extrapolate the results to N — oo using a function linear in 1/N? excluding the data
with N = 2. The resulting extrapolations are shown by the gray curves in both panels of Fig. 4. To
quantify the systematic uncertainty of the extrapolation, we repeat the extrapolation excluding the
N = 3 result. The results for ¢ and rgky in the large-N limit are

rV/o 7 =1.2304(5) and AR =0.9842(15). 3.3)

The value for 1/0r( is unambiguously determined within the EST and we display the values for the
LC spectrum and its leading order (LO) expansion in 1/R by the dashed lines in Fig. 4. The large-
N extrapolation clearly lies between the two cases, indicating that corrections to the LC spectrum
are mandatory to describe the large-N potential down to R = ry. In the right panel of Fig. 4 we
also show results for rggn from the literature [40, 41] (dashed lines). Our results turn out to be
somewhat smaller than the ones from previous computations.

4. EST analysis without massive modes

The EST predicts corrections to the LC spectrum starting at O(R™*). To test whether this is
reflected by the data we fit them to the form

T n

V(R)=0R\[1- 5+ Jor)

+V, 4.1
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Figure 6: Results for the boundary coefficient b, for the individual lattices versus the squared lattice spacing
in units of ro. The red band indicates the result for b, obtained from the excited states in [24].

where k, 1, o and Vp, are fit parameters. If the data agree with the EST predictions, we expect
to see a clear plateau at k = 4 when k is plotted versus Ryi,. Two typical examples for the Ry,
dependence of k are shown in Fig. 5. While the results for SU(3) indicate a clear plateau at k = 4,
the SU(5) results show values of k = 4. This is generally the case for larger N and possibly indicates
a decrease of b, (which we will indeed find below), so that higher order corrections become more
important with increasing N.

To extract b, at this point neglecting massive mode corrections, we use the general fit formula
A, A

VoSR6  O3R7
(1 ,[2)

Here EEST s the energy level with N,/ = 0 from Eq. (2.1) and 7", 7*

along with o and b,. We perform five different fits:

A take o and V| from Sec. 3, use by, y(()l) and }/éz) as free parameters;

B use o, Vp and b, as free parameters, set yél) =0and }/éZ) =0;

C use 0, V), by and y(gl)

D use o, Vy, b and }/0(2) as free parameters, set yél) =0;

E use o, Vo, y(gl) and }/(52)

V(R) = EEST(R) + +V%. (4.2)

and Vj are fit parameters

as free parameters, set yéz) =0;

as free parameters, set by = 0.

For all of the fits we use the second smallest value for R, for which y 2 /dof< 1.5. Better or worse
agreement with the data is then indicated by the value of Ry, in combination with the number of
higher order terms included in the fit. For fit C, for instance, we expect a smaller value of Ry,
compared to fit B, which does not contain higher order corrections. For all parameter sets fit E
demands larger values for R, compared to fits C and D, indicating less agreement with the data.
This is possibly due to the fact that both correction terms are needed to mimic the 1/R* term at
intermediate distances, which shows that the 1/R* term is necessary to successfully describe the
data. For fit A, Rpnin has to be larger than for fits C and D, showing that it is too restrictive to fix the
values of o and Vj in the fits, even though the change of ¢ is not significant. In the following we
thus use fits B to D and their weighted average as the final result.
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Figure 7: Continuum results for the boundary coefficient b, versus 1/N?. The black point is the result in
the large-N limit.

The results for b, are shown in Fig. 6. The uncertainties also include the systematic uncertainty
associated with the particular choice for Ry,;,, estimated from the fit results obtained with Ry, —
Rpin =+ 1a, and from the unknown higher order terms, estimated by the spread of the results from
fits B to D. For the continuum extrapolation we employ a function linear in a>. To estimate the
systematics associated with this choice, we compare the result to the ones obtained including only
the data with (a/rp) > 0.2. For error propagation of the other systematic uncertainties, we perform
all possible combinations of continuum (and later also large-N) extrapolations and compute the
individual systematic uncertainties as described above. The continuum results for b, are plotted in
Fig. 7.

We extrapolate b, to the large-N limit using a linear function in 1/N? including data with
N > 2. As for the continuum extrapolation, we estimate the systematic uncertainty by comparison
to an extrapolation including data with N > 3. We obtain

By = —0.0141(3)(15)(13)(9)(17). 4.3)

The first uncertainty is purely statistical, the second is the systematic one associated with the higher
order corrections, the third is the one for the choice of Ry;,, the fourth is the one of the continuum
extrapolation and the fifth the one of the large-N extrapolation. The final result is also shown as the
black point in Fig. 7.

Finally, we test the consistency with the excited states. In the EST the energies are fully
determined by &, V;) and b, up to higher order terms. We compare the EST prediction for the first
excited state with the data for SU(2) at f = 5.0 from Ref. [24] in Fig. 8. The data show good
agreement with the curve up to \/OGR = 3, where deviations due to higher order terms become
visible. In fact, a naive fit including a term of O(1/R®) agrees with the data down to \/GR =~ 1.8.
One can also extract b, from the excited states [24]. The result, which is in excellent agreement
with the analysis of the potential, is shown as the red band in Fig. 8. We thus conclude that the
results for b, are fully consistent with the excited state data. A more detailed comparison is planned
for the near future.
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Figure 8: Comparison between the EST prediction and the data for the first excited state E; for SU(2) at
B =5.0. The red curve is the difference from the LC spectrum and the one labeled with ‘LC+R~*’ includes
the BC term. The vertical line with label ‘RCL,C’ indicates the radius of convergence for the series expansion
in 1/R of the first excited state of the LC spectrum.

5. Testing the presence of massive modes

So far we have neglected possible massive-mode contributions. To test how they would affect
the results for b, we repeat the analysis from the previous section employing a fit function of the
form

2ka  (d=2)(d—10)7? %" n %
3840moR* VGRS oK

V(R) = EEST(R) — = Vo. (5.1

(R) = o ; +Vo (6.1
In practice, the infinite sum is completely dominated by the first few terms, so that it is sufficient
to use the first 100 terms to reach machine precision. We perform four different fits:

F use o, Vo, by and m as free parameters, set y(gl) = y(gz) =0;

G use o, Vp, by, m and yél) as free parameters, set y(gz) =0;

H use o, V), by, m and y(gz) as free parameters, set y(gl) =0;

J use o, Vp and m as free parameters, set y(gl) = yéz) =b,=0.

The last fit is similar to fit E above and checks whether the R~* term from Eq. (2.2) is already
sufficient to describe the data. As before, however, we find that fit J needs much larger values of
Rnin and, consequently, does not compare equally well to the data as the other fits. Unfortunately,
the results from fits G and H are not sufficiently precise, since the fits contain two higher order
terms. In the following we will thus only use fit F. Note, that this impedes the estimation of the
systematic uncertainty due to possible higher order terms.

We show the results for b, and m in figure 9. Due to the additional R~* term, the results for by
move closer to zero and, in general, the uncertainties for b, increase. The results for m approach the
continuum smoothly, enabling a linear continuum extrapolation. The continuum results are shown
in Fig. 10. While the uncertainties for b, are too large to perform a reliable extrapolation to N — oo,
the results for m allow for a reliable large-N extrapolation and the final result is

mN—)oo

rom™ 7 = 1.34(4)(8)(25)(27), or W

= 1.1(4). (5.2)
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Figure 9: Results for the boundary coefficient by and the mass m in units if ro for the individual lattices
versus the squared lattice spacing.
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Figure 10: Continuum results for the boundary coefficient 5 and the mass m versus 1/N2. The black point
for m is the result in the large-N limit.

Here the first uncertainty is purely statistical, the second is the systematic uncertainty associ-
ated with Ry, the third is the one of the continuum extrapolation and the fourth is the one of
the large-N extrapolation. This result can be compared to the one for the massive mode in 4d,
mh =/ \/ENHW = 1.713(4) [42]. While m appears to be somewhat smaller in 3d, one has to keep
in mind, that the 4d result is not continuum extrapolated. It is thus possible, that we are actually
seeing a similar massive mode in 3 and 4 dimensions.

We can again compare the result for b, with the SU(2), B = 5.0 results for the excited states.
The comparison is shown in Fig. 11. The prediction (blue curve) lies below the data even at large
R. Naively, this implies a contradiction with the excited state data. However, the excited state
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Figure 11: Comparison between the EST prediction and the data for E; for SU(2) and § = 5.0 as in Fig. 8.
The blue curve now includes b, obtained from the analysis with massive modes, while the gray curve is the
one from Fig. 8.

contributions of the massive mode are unknown, rendering the comparison incomplete.

6. Conclusions

In this proceedings article I provided an update on my studies of the energy levels of the (open)
flux tube and their comparison to the EST in 3d SU(N) gauge theories. I obtain continuum and
large-N extrapolated results for the EST parameters with full control over the relevant systematic
effects. The large-N extrapolated results are given in Eqs. (3.3), (4.3) and (5.2). I have also shown
that the leading order correction to the LC spectrum is indeed of O(R™*). The main uncertainty
for by concerns the presence or absence of massive modes. In both cases, however, b, remains
non-vanishing at finite N and, likely, also in the large-N limit (cf. Fig. 10). It would be interesting
to obtain a prediction for the contribution of massive modes to the excited states. This could
potentially help to either rule out or confirm the presence of massive modes and might even enable
the discrimination of massive mode and rigidity contributions. It is intriguing to see that the result
for m is in good agreement with the masses found in [42], providing a hint for a similar origin of
the massive modes in 3d and 4d. In the large-N limit the KKN prediction agrees with the lattice
result up to 1.6%, which is about a factor of two further away than previous findings [40, 41].
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