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The combined approach of light-front holography and superconformal algebra provides insight
into the origin of color confinement and the QCD mass scale. Light-front (LF) holography pre-
dicts Lorentz-invariant light-front Schrödinger bound state equations for QCD, analogous to the
quantum mechanical Schrödinger equation for atoms in QED. A key feature is the implemen-
tation of the de Alfaro, Fubini and Furlan (dAFF) procedure for breaking conformal invariance
which allows a mass parameter to appear in the Hamiltonian and the equations of motion while
retaining the conformal symmetry of the action. When one applies the dAFF procedure to chiral
QCD, a mass scale κ appears which determines hadron masses and universal Regge slopes. It
also implies a unique form of the soft-wall dilaton which modifies the action of AdS5. The re-
sult is a remarkably simple analytic description of quark confinement, as well as nonperturbative
hadronic structure and dynamics. The same mass parameter κ controls the Gaussian fall-off of
the nonperturbative QCD running coupling: αs(Q2) ∝ exp

(
−Q2/4κ2

)
, in agreement with the

effective charge determined from measurements of the Bjorken sum rule. The mass scale κ un-
derlying hadron masses can be connected to the parameter ΛMS in the QCD running coupling by
matching the magnitude and slope of the nonperturbative coupling to perturbative QCD at large
Q2. The result is an effective coupling αs(Q2) defined at all momenta and a transition scale Q0

which separates perturbative and nonperturbative dynamics. QCD is not supersymmetrical in the
traditional sense – the QCD Lagrangian is based on quark and gluonic fields, not squarks nor
gluinos. However, when one applies superconformal algebra, one obtains a unified spectroscopy
of meson, baryon, and tetraquarks as equal-mass members of the same 4-plet representation. The
LF resulting Schrödinger equations match the bound state equation obtained from LF holography.
The predicted Regge trajectories have a universal slope in both the principal quantum number n

and orbital angular momentum. The meson and baryon Regge trajectories are identical when one
compares mesons with baryons with orbital angular momentum LM = LB + 1. The matching of
bosonic meson and fermionic baryon masses is a manifestation of a hidden supersymmetry in
hadron physics. The pion eigenstate is massless for massless quarks, despite its dynamical struc-
ture as a qq̄ bound state. The superconformal relations also can be extended to heavy-light quark
mesons and baryons. One also obtains empirically viable predictions for spacelike and timelike
hadronic form factors, structure functions, distribution amplitudes, and transverse momentum
distributions.
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1. Profound Questions for Hadron Physics

Although the foundations of quantum chromodynamics (QCD) were developed 45 years ago [1],
there are fundamental and profound questions which are not fully understood. For example, what is
the dynamical mechanism for color confinement which prevents quarks and gluons from appearing
as asymptotic states? What is the origin of the QCD mass scale which gives the proton its mass,
and what is the color confining dynamics which can produce a massless pion qq̄ bound state when
the quarks are massless? Why are Regge slopes M2 ∝ L,n identical for both mesons and baryons,
in both angular momentum L and the principal quantum number n? What is the analytic form of
the QCD running coupling αs(Q) at all scales, both hard and soft? What is the full spectroscopy of
hadrons in QCD, including tetraquarks, pentaquarks, gluonia, and other exotic states? What are the
fundamental frame-independent nonperturbative wavefunctions of the hadronic eigenstates which
underly dynamical observables such as structure functions and form factors? How do the off-shell
quarks and gluons produced in collisions remain confined and hadronize at the amplitude level to
produce the final-state hadrons? What is the nature of the QCD vacuum – can vacuum condensates
exist without causing huge contributions to the cosmological constant?

In this report, I will review recent insights to the fundamental features of QCD that can be
obtained using a novel theoretical approach based on light-front holography [2] and supercon-
formal algebra [3, 4]. A key feature is the implementation of the de Alfaro, Fubini and Furlan
(dAFF) procedure for breaking conformal invariance which allows a mass parameter to appear
in the Hamiltonian and the equations of motion, while retaining the conformal symmetry of the
action [5]. A key consequence for chiral QCD is a Lorentz-invariant single-variable light-front
Schrödinger bound-state equation for qq̄ mesons: [2, 6]

[
− d

dζ 2 +
(4L2−1)

4ζ 2 +U(ζ 2)
]
ψ(ζ ) = M2

ψ(ζ ). (1)

The potential has the unique form [6]

U(ζ 2) = κ
4
ζ

2 +2κ
2(L+S−1), (2)

where ζ 2 = b2
⊥x(1−x) is the radial coordinate of light-front (LF) theory, x = k+

p+ = k0+kz

P0+Pz and 1−x
are the quark and antiquark LF momentum fractions, S = Sz is the ẑ projection of the qq̄ spin and
L = Lz is the relative orbital angular momentum of the q and q̄. Quark masses add a term ∑i

m2
i

xi
to

the LF Hamiltonian. See Fig. 1. The color-confining harmonic oscillator contribution κ4ζ 2 to the
LF potential for light quarks becomes the usual σr confining potential for heavy quarkonium in the
nonrelativistic limit. [7]

Classical gravity theory based on five-dimensional Anti-de Sitter spacetime AdS5 provides
a geometrical representation of conformal symmetry [8]. It is also holographically dual [2] to
field theory in physical 3+ 1 spacetime quantized using LF time τ = t + z/c. [9] Eq. (1) with the
potential (2) can then be derived using AdS5 space and the dilaton eκ2 z̃2

“soft-wall” modification
of its action, where the fifth coordinate of AdS space z̃ is identified with the light-front coordinate
ζ using light-front holography. This specific dilaton is mandated by the dAFF procedure.

The κ4ζ 2 harmonic oscillator contribution to the potential U(ζ 2) confines the colored con-
stituent quarks. The eigenvalues of this equation

M2 = 4κ
2(n+L+S/2), (3)
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provide a surprisingly accurate representation of meson spectroscopy for κ = 0.53 GeV . The Regge
slopes in n and L are predicted to be identical, consistent with observed hadron spectroscopy.
The pion with n = L = S = 0 is massless for massless quarks, despite its dynamical structure
as a qq̄ bound state. The eigensolutions of Eq. (1) ψn,L(x,k2

⊥) provide the LF wave functions
underlying hadron structure and dynamics in the nonperturbative domain, as well as hadronization,
the conversion of the off-shell constituent quarks to the mesons qq̄→ H at the amplitude level.
Since the units of mass GeV are irrelevant to QCD, only ratios of masses can be predicted by
QCD; thus the value of κ is not a fixed parameter – the only parameters entering the light-front
holographic predictions are the quark masses predicted by the Higgs mechanism in the Standard
Model.

Remarkably, a similar LF Schrodinger equation is predicted for baryons by superconformal
algebra where the baryons |q[qq]〉 are represented as a 3C quark and a 3̄C composite diquark [10,
11] with relative orbital angular momentum LB. A crucial difference with the meson equation
is that LB− 1 replaces L = LM. The meson and baryon Regge trajectories in n and L are then
identical when one compares the mesons and baryons spectra with orbital angular momentum
LM = LB + 1. This equality of bosonic meson and fermionic baryon masses is a manifestation
of a hidden supersymmetry in hadron physics. Superconformal algebra also predicts that each
baryon wave function has two components with LB and LB + 1 with equal weight so that there
is equal probability for the quark to have spin parallel and antiparallel to the total baryon spin
Jz [3]. Thus the total angular momentum of the quark-scalar diquark proton is carried by the
quark’s orbital angular momentum. This is a novel realization of the chiral symmetry of the QCD
Lagrangian. The |qq̄〉 mesons and the |q[qq]〉 baryons are also degenerate in mass with |[qq][q̄q̄]〉
tetraquarks. Thus another remarkable consequence is the organization of the hadron spectrum
into “4-plet” supersymmetric representations. Solving for relativistic hadron spectroscopy and
dynamics using this LF formalism is analogous to solving for atomic hadron spectroscopy and
dynamics in nonrelativistic Schrödinger theory.

The running coupling of QCD is predicted to have the form αs(Q2) = αs(0)e−Q2/4κ2
in the

nonperturbative domain. This is derived using LF holography by identifying the AdS5 coupling
defined by the conformally breaking dilaton eκ2 z̃2

with the QCD coupling [12, 13, 14, 15, 16, 17].
The matching of the magnitude and derivative of this nonperturbative prediction at its inflection
point Q0 with the pQCD coupling then determines αs(Q2) at all scales for any choice of renor-
malization scheme. We have also used effective nonperturbative LF holographic wave functions,
together with BFKL, ERBL and DGLAP evolution equations, to predict structure functions, dis-
tribution amplitudes and hard exclusive amplitudes beyond the transition scale Q0 [18, 19, 20].
Superconformal algebra predicts that the resulting generalized parton distributions of mesons and
baryons have a universal structure [20]. One can also predict the distributions of higher Fock states
such as |uudQQ̄〉 with intrinsic heavy quarks with their QQ̄ asymmetries [21].

Quark counting rules for hadron form factors and other hard exclusive amplitudes are also a
property of these nonperturbative solutions. One can thus use counting rules to identify the field
content of mesons, baryons, tetraquarks, and gluonium. For example, the asymptotic power-law
falloff of the exclusive annihilation cross sections for σ(e+e−→Ha+Hb)∝ (1/s)1+nH a+nHb , where
nH is the number of valence constituent fields (the leading twist ) of a meson (n=2), baryon (n=3 ),
tetraquark (n=4), gluonium (n=2,3), or pentaquark (n=5). [22, 23].
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Light-front perturbation theory has many important simplifications for computing scattering
amplitudes perturbatively, including explicit unitarity, recursion relations, overall Jz conservation,
and limits on the change in Lzat each vertex [24].

In Dirac’s front form, the vacuum state is the state of lowest invariant mass HLF |0〉 = 0. Dis-
connected vacuum diagrams do not appear, so 〈0|T µν |0〉LF = 0 [25]. Thus in the front form, QCD
effects associated with the vacuum are contained in the hadron wavefunctions [26], and one predicts
zero contribution to the cosmological constant [27].

Light-Front Holography  
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Figure 1: The convergence of theoret-
ical methods for generating a model of
hadron spectroscopy and dynamics with
color confinement and meson-baryon su-
persymmetric relations.

In the following sections I will discuss these points in detail.

2. Conformal Invariance of QCD and the Principle of Maximum Conformality

Conformal symmetry is an underlying symmetry of QCD. If one sets the quark masses to zero
in the QCD Lagrangian, the theory has no evident mass scale, and it is manifestly scale invariant.
In effect, the classical chiral QCD theory is conformal.

A key tool is the remarkable observation of dAFF [5] which shows how a mass scale can
appear in the Hamiltonian and the equations of motion of a theory while retaining the conformal
symmetry of the action. When one applies the dAFF procedure to chiral light-front QCD, a mass
scale κ appears which determines universal Regge slopes and hadron masses in the absence of the
Higgs coupling.

Conformal symmetry also leads to a rigorous way to eliminate the renormalization scale am-
biguity [28, 29, 30, 31]. A primary problem for perturbative QCD analyses is how to set the renor-
malization scale of the QCD running coupling in order to achieve precise fixed-order predictions
for physical observables. The Principle of Maximal Conformality (PMC) provides a systematic
way to set the renormalization scales order-by-order for any perturbative QCD process, eliminat-
ing the ambiguities associated with the conventional renormalization scale-setting procedure. The
resulting predictions are independent of the choice of renormalization scheme, a requirement of
renormalization group invariance. The scales of the QCD couplings and the effective number of
quark flavors are set order-by-order by absorbing the nonconformal β terms in the pQCD series into
the running coupling. The resulting pQCD series then matches the β = 0 conformal series. The
PMC generalizes the BLM procedure to all orders [32] and it reduces to the Gell Mann-Low scale
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setting procedure for Abelian QED in the NC→ 0 limit. The divergent renormalon series does not
appear. The PMC satisfies renormalization group invariance and all of the other self-consistency
conditions derived from the renormalization group. It thus systematically eliminates a major theo-
retical uncertainty for pQCD predictions and increases the sensitivity of experiment to new physics
beyond the Standard Model.

The Crewther relation [33], which was originally derived for conformal theory, provides a
remarkable connection between two observables when the β function vanishes. Specifically, it
connects the non-singlet Adler function to the Bjorken sum rule coefficient for polarized deep-
inelastic electron scattering at leading twist. The “Generalized Crewther Relation" [33, 34, 35]
relates these observables for physical QCD with nonzero β function. The resulting relation is
independent of the choice of the renormalization scheme at any finite order, and the dependence
on the choice of the initial scale is negligible. Similar scale-fixed “commensurate scale relations”
also connect other physical observables at their physical momentum scales, thus providing new
convention-independent precision tests of QCD.

3. The Origin of the QCD Mass Scale and de Alfaro, Fubini and Furlan Procedure

A fundamental question for QCD is the origin of the mass of the proton and other hadrons
when the quark masses are zero. It is often stated that the mass scale ΛMS of the renormalized
perturbative theory generates the nonperturbative QCD mass scale; however, this “dimensional
transmutation” solution is problematic since the perturbative scale is renormalization-scheme de-
pendent, whereas hadron masses cannot depend on a theoretical convention. It is conventional to
measure hadron masses in MeV units; however, QCD has no knowledge of units such as electron-
volts. Thus QCD at mq = 0 can at best only predict ratios of masses such as mρ/mp and other
dimensionless quantities. It is often argued that the QCD mass scale reflects the presence of quark
and gluon condensates in the QCD vacuum state. However, such condensates lead to a cosmolog-
ical constant a factor of 1042 larger than measured. Nontrivial vacuum structure does not appear
in QCD if one defines the vacuum state as the eigenstate of lowest invariant mass of the QCD
LF Hamiltonian. In fact, in Dirac’s boost invariant “front form” [9], where the time variable is
the time x+ = t + z/c along the light-front, the light-front vacuum |0〉LF is both causal and frame-
independent; one thus has 〈0|T µν |0〉LF = 0 [25] and zero cosmological constant [27, 26]. In the
case of the Higgs theory, the traditional Higgs vacuum expectation value (VEV) is replaced by a
“zero mode” in the LF theory, analogous to a classical Stark or Zeeman field [36]. The Higgs LF
zero mode [36] has no energy-momentum density, so it also gives zero contribution to the cosmo-
logical constant.

The remarkable work of de Alfaro, Fubini, and Furlan [5] provides a novel solution for the
origin of the hadron mass scale in QCD. dAFF have shown that one can introduce a nonzero mass
scale κ into the Hamiltonian of a conformal theory without affecting the conformal invariance of
the action. The essential step is to add to the Hamiltonian H a term proportional to the dilation
operator D and the special conformal operator K to fulfill the algebra of the of the generators of the
conformal group. In the case of one-dimensional quantum mechanics, the resulting Hamiltonian
acquires a confining harmonic oscillator potential; however, after a redefinition of the time variable,
the action remains conformal.

4
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The application of dAFF then leads in fact to a color-confining LF harmonic oscillator poten-
tial, where again the action remains conformal. In fact, de Téramond, Dosch, and Brodsky [6] have
shown that a mass gap and a fundamental color confinement scale also appear when one extends
the dAFF procedure to LF Hamiltonian theory in physical 3+1 spacetime. The LF equation for qq̄
bound states for mq = 0 can be systematically reduced to Eq. (1), a differential equation in a single
LF radial variable ζ ; where ζ 2 = b2

⊥x(1−x) is the radial variable of the front form and L=max |Lz|
is the LF orbital angular momentum [2]. This is in analogy to the non-relativistic radial Schrödinger
equation for bound states such as positronium in QCD. Thus in the case of QCD(3+1) – using the
causal, frame-independent light-front Hamiltonian formalism – the confining LF potential has the
unique form κ4ζ 2. The same procedure can be applied to relativistic quantum field theory using
LF quantization [37].

4. Light-Front Holography

As noted by Maldacena [8], anti-deSitter space in five space-time dimensions (AdS5) provides
a geometrical representation of the conformal group. Thus AdS5 can be used as a starting point
for a conformal theory such as chiral QCD. In fact AdS5 is holographically dual to gauge theory
quantized using light-front time, Dirac’s front form. Exclusive hadron amplitudes, such as elastic
and transition form factors are given in terms of convolutions of light-front wavefunctions [38]. The
light-front Drell-Yan-West formulae for electromagnetic and gravitational form factors is identical
to the Polchinski-Strassler [39] formula for form factors in AdS5. This identification “light-front
holography” also provides a nonperturbative derivation of scaling laws [40, 41] for form factors at
large momentum transfer. Additional references and reviews of LF Holography may be found in
refs. [42, 43, 44, 45, 46].

Remarkably, the identical LF potential and the same LF equation of motion are obtained
from AdS5 when one identifies the fifth coordinate z̃ with the LF radial coordinate ζ and in-
troduces a specific modification of the AdS5 metric – the “dilaton” eφ(z̃) = e+κ2 z̃2

. This dilaton
also leads to a Gaussian functional form of the nonperturbative QCD running coupling: αs(Q2) =

αs(0)exp
(
− Q2/4κ2

)
, in agreement with the effective charge determined from measurements [47,

48, 49] of the Bjorken sum rule. See Fig. 2. Deur, de Téramond, and Brodsky [12, 13, 14, 15] have
also shown how the parameter κ , which determines the mass scale of hadrons and Regge slopes in
the zero quark mass limit, can be connected to the mass scale Λs controlling the evolution of the
perturbative QCD coupling. The high momentum transfer dependence of the coupling αg1(Q

2) is
predicted by pQCD. The matching of the high and low momentum transfer regimes of αg1(Q

2) –
both its value and its slope – then determines a scale Q0 = 0.87±0.08 GeV which sets the interface
between perturbative and nonperturbative hadron dynamics [17]. This connection can be done for
any choice of renormalization scheme, such as the MS scheme, The mass scale κ underlying hadron
masses can thus be connected to the parameter ΛMS in the QCD running coupling by matching its
predicted nonperturbative form to the perturbative QCD regime. The result is an effective coupling
αs(Q2) defined at all momenta. See Fig. 3.

The identification of AdS5 with the light-front Hamiltonian theory automatically introduces an
extra spin-dependent constant term 2κ2(L+S−1) in the LF Hamiltonian, where L = maxLz,S =

maxSz with Jz = Lz+Sz are the LF spins. The resulting holographic prediction is the single variable
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“LF Schrödinger equation” in ζ , where U(ζ 2) = κ4ζ 2 + 2κ2(L+ S− 1). The synthesis of holo-
graphic QCD and conformal quantum mechanics is illustrated in Fig. 1. The eigenvalues for the
meson spectrum are M2(L,n) = 4κ2(n+L+S/2). The mesonic spectrum of qq̄ bound states is thus
described as Regge trajectories in both the principal quantum number n (the number of nodes in the
radial wavefunction) and the orbital angular momentum L with the same slope 4κ2. Color confine-
ment is a consequence of the light-front potential U(ζ 2). Remarkably, the pion (n= 0,J = L= 0) is
massless: mπ = 0 for mq = 0. The LF potential contains a term 2κ2(J−1) which is analogous to the
hyperfine spin-spin splitting interaction in atoms. This term vanishes for the ρ since J = L+S = 1.
However, in the case of the pion with J = 0, it gives a negative contribution −2κ2 to the pion mass
squared which exactly cancels the positive contributions from the LF kinetic energy and confining
potential. Thus light-front holography explains another fundamental question in hadron physics –
how a zero mass qq̄ pseudoscalar pion bound state can emerge, despite its composite structure.

The eigensolutions of the LF Schrödinger equation generate both the mass spectrum and the
light front wave functions ψM(x,k⊥,λ ) for all qq̄ meson bound states. Nonzero quark masses ap-

pear in the “LF kinetic energy” (LFKE) ∑i[
k2
⊥+m2

x ]i contribution to the LF Hamiltonian – the square
of the invariant mass of the constituents: M 2 = (∑i pµ

i )
2. One can identify the m2

x contribution to
the LFKE as arising in the Higgs theory from the coupling m

x ×m of each quark to the background
zero-mode Higgs field [36] which replaces the usual VEV of the standard time “instant form”. The
resulting nonperturbative hadronic LF wavefunctions are Gaussian functions of the parton invariant
mass squared M 2; they do not factor as functions of k2

⊥. The pion distribution amplitude has the
form φπ(x) ∝

√
x(1− x) in the nonperturbative domain, which then evolves by ERBL evolution to

x(1− x) at infinite Q2 [18]. In the heavy quark limit, one recovers the usual σr confining potential
for heavy quarkonium [7].

6
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5. Superconformal Algebra and Supersymmetric Hadron Spectroscopy

Another advance in LF hadron physics is the application of superconformal algebra, a feature
of the underlying conformal symmetry of chiral QCD, originally discovered by Haag, Lopuszanski,
and Sohnius [50]. The superconformal group in one dimension has an elegant 2× 2 Pauli matrix
representation. The conformal Hamiltonian operator and the special conformal operator can be
represented as anticommutators of fermionic generators H = 1/2{Q,Q†} and K = 1/2{S,S†}. As
shown by Fubini and Rabinovici, [51], a nonconformal Hamiltonian with a mass scale can then be
obtained by shifting Q→Q+

√
ωK, the supersymmetric analog of the dAFF procedure. When ex-

tended to hadron physics in the light front this procedure leads to universal confinement for mesons
and baryons and a zero mass pion in the chiral limit [3, 4]. In effect, one has obtained extended
representations of the superconformal algebra [51, 52]. This ansatz extends the predictions for the
hadron spectrum to a “4-plet” – consisting of a mass-degenerate quark-antiquark meson, a quark-
diquark baryon, and a diquark-antidiquark tetraquark, as shown in Fig. 4. The 4-plet contains two
entries Ψ± for each baryon, corresponding to internal orbital angular momentum L and L+1. This
property of the baryon LFWFs is the analog of the eigensolution of the Dirac-Coulomb equation
which has both an upper component Ψ+ and a lower component Ψ− = ~σ ·~p

m+E−V Ψ+.
Bound-state LF Schrödinger equations for both baryons and mesons can be derived from su-

perconformal algebra [3, 4]. Remarkably, the predicted meson equation is identical to the LF
Schrödinger equation with the same confinement potential and spin term that was derived from
LF holography from AdS5 with the soft-wall dilaton e+κ2z2

, with the same confinement potential
and spin term. See Eqs. (1) and (2). The baryonic eigensolutions correspond to bound states of
3C quarks to a 3̄C spin-0 or spin-1 qq diquark cluster; they each have two amplitudes LB,LB + 1
with have equal Fock state probability – a feature of “quark chirality invariance”. For example,
the proton’s Fock state components ψ+ (with parallel quark and baryon spins) and ψ− (with anti-
parallel quark and baryon spins) have equal Fock state probability; thus the proton’s spin is carried
by quark orbital angular momentum in the nonperturbative domain. Predictions for the static prop-
erties of the nucleons are discussed in Ref. [53]. The predicted spectrum, M2(n,L) = 4κ2(n+L)
for mesons and M2(n,L) = 4κ2(n+L+ 1) for nucleons, is remarkably consistent with observed
hadronic spectroscopy: The Regge-slopes in n and L are identical. The extension of the supercon-
formal structure to include the spin-spin interaction is described [54]. The predicted meson, baryon
and tetraquark masses coincide if one identifies a meson with internal orbital angular momentum
LM with its superpartner baryon or tetraquark with LB = LM−1. Superconformal algebra thus pre-
dicts that mesons with LM = LB + 1 have the same mass as the baryons in the supermultiplet. An
example of the mass degeneracy of the ρ/ω meson Regge trajectory with the J = 3/2 ∆-baryon
trajectory is shown in Fig. 5. The value of κ is not a fixed parameter, since only ratios of masses
are predicted by QCD.

The combination of superconformal algebra and light-front dynamics thus leads to the novel
prediction that hadron physics has supersymmetric properties in both spectroscopy and dynamics.
The excitation spectra of relativistic light-quark meson, baryon and tetraquark bound states all
lie on linear Regge trajectories with identical slopes in the radial and orbital quantum numbers.
Detailed predictions for the tetraquark spectroscopy and comparisons with the observed hadron
spectrum are presented in Ref. [55].
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6. Supersymmetric Hadron Spectroscopy for Heavy Quarks

The predictions from light-front holography and superconformal algebra have been extended
to mesons, baryons, and tetraquarks with strange, charm and bottom quarks in Refs. [10, 11].
Although conformal symmetry is strongly broken by the heavy quark mass, the basic underlying
supersymmetric mechanism, which transforms mesons to baryons (and baryons to tetraquarks)
into each other, still holds and gives remarkable connections and mass degeneracy across the entire
spectrum of light, heavy-light and double-heavy hadrons. The excitation spectra of the heavy quark
meson, baryon and tetraquark bound states continue to lie on universal linear Regge trajectories
with identical slopes in the radial and orbital quantum numbers, but with an increased value for
the slope. For example, the mass of the lightest double-charm baryon |c[cq]〉, where the composite
[cq] is a scalar diquark, is predicted to be identical to the mass of the L = 1 orbital excitation of
the |cc̄〉 ( the 1++ h′c(L = 1) ) and also the mass of the |[cq][c̄q̄]〉 double-charm tetraquark. In
fact, the mass of the hc(3525) matches the mass of the double-charm baryon Ξ

+
ccd(3520) identified

by SELEX and a tetraquark candidate the Ξcc(3415). For more details, see Refs. [55, 56]. The
effective supersymmetric properties of QCD can be used to identify the structure of the heavy
quark mesons, baryons and tetraquark states [55].

Superconformal Algebra
2X2 Hadronic Multiplets

&%
'$ue &%

'$e ee
�M , LB + 1  B+, LB

-R†
�

&%
'$e ee
 B�, LB + 1

&%
'$e eu u
�T , LB

-R†
�

Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2 ⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, JP = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m2 =
Pn

i=1
m2

i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e�
1
2�

�m2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.
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Proton: |u[ud]> Quark + Scalar Diquark
Equal Weight: L=0, L=1

R†
� q ! [q̄q̄]

3C ! 3C

R†
� q̄ ! [qq]

3̄C ! 3̄C

Figure 4: The 4-plet representation of mass-
degenerate hadronic states predicted by superconfor-
mal algebra [6]. Mesons are qq̄ bound states, baryons
are quark – antidiquark bound states and tetraquarks
are diquark-antidiquark bound states. The supersym-
metric ladder operator R†

λ
connects quarks and anti-

diquark clusters of the same color representation.
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Figure 5: Comparison of the ρ/ω me-
son Regge trajectory with the J = 3/2 ∆

baryon trajectory. Superconformal alge-
bra predicts the degeneracy of the meson
and baryon trajectories if one identifies a
meson with internal orbital angular mo-
mentum LM with its superpartner baryon
with LM = LB +1. See Refs. [3, 4].

Thus one predicts supersymmetric hadron spectroscopy – bosons and fermions with the same
mass and twist. The members of the 4-plet not only have identical masses for the bosonic and
fermionic hadron eigenvalues, but also supersymmetric relations between their eigenfunctions –
their light-front wavefunctions. The baryonic eigensolutions correspond to bound states of 3C

quarks to a 3̄C spin-0 or spin-1 qq diquark cluster; the tetraquarks in the 4-plet are bound states of
diquarks and anti-diquarks. In the case of a nucleon, the overlap of the L = 0 and L = 1 LF wave-
functions in the Drell-Yan-West formula is required to have a non-zero Pauli form factor F2(Q2) and
anomalous magnetic moment [38]. The existence of both components is also necessary to generate
the pseudo-T-odd Sivers single-spin asymmetry in deep inelastic lepton-nucleon scattering [57].
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7. Summary

The combination of conformal symmetry, light-front dynamics, the dAFF procedure (confor-
mal quantum mechanics) and its holographic embedding in AdS5 space, has provided new insights,
not only into the physics underlying color confinement, but also into the form of the nonperturbative
QCD coupling and the QCD mass scale. A comprehensive review is given in Ref. [45].

The QCD Lagrangian is not supersymmetrical; it is based on quark and gluonic fields, not
squarks nor gluinos. However, when one applies superconformal algebra [50] using the extended
dAFF procedure of Fubini and Rabinovici [51], one obtains a unified spectroscopy of meson,
baryon, and tetraquarks as equal-mass members of the same 4-plet representation, reflecting the
underlying conformal symmetry of semi-classical QCD for massless quarks as well as the color
dynamics underlying the supersymmetric connection of mesons, baryons and tetraquarks from the
fundamental SU(3)C representation 3̄∼ 3×3. The set of “Light-front Schrödinger equations” pre-
dicted from superconformal algebra [3, 4], match the bound-state equation obtained from AdS5 and
LF holography. They incorporate color confinement and other essential spectroscopic and dynam-
ical features of hadron physics, including a massless pion for zero quark mass and linear Regge
trajectories with the same slope in the radial quantum number n and internal orbital angular mo-
mentum L for mesons, baryons, and tetraquarks. In fact, the meson and baryon Regge trajectories
and spectra are identical when one compares mesons with baryons with orbital angular momen-
tum LM = LB + 1. Their LF wavefunctions, the eigensolutions of the LF Schrödinger equations,
have the same underlying universal form. A new method for solving nonperturbative QCD “Basis
Light-Front Quantization” (BLFQ) [58], uses the eigensolutions of a color-confining approxima-
tion to QCD (such as LF holography) as the basis functions, rather than the plane-wave basis used
in DLCQ, thus incorporating the full dynamics of QCD.

The light-front holographic approach, with the constraints imposed by the superconformal al-
gebraic structure, predicts novel supersymmetric relations between mesons, baryons, and tetraquarks
of the same parity as members of the same 4-plet representation of superconformal algebra. Em-
pirically viable predictions for spacelike and timelike hadronic form factors, structure functions,
distribution amplitudes, and transverse momentum distributions have also been obtained [20, 59].
One can also observe features of superconformal symmetry in the spectroscopy and dynamics of
heavy-light as well as double-heavy mesons and baryons [11, 55]. The combination of light-front
field theory with superconformal algebra thus leads to the novel prediction that hadron physics
has supersymmetric properties in both spectroscopy and dynamics. One can test the similarities
of their wavefunctions and form factors in exclusive reactions such as e+e− → πT where T is a
tetraquark [23]. Quark counting rules for hadron form factors and other hard exclusive amplitudes
are also a property of these nonperturbative solutions [22, 23]. One can thus use counting rules to
identify the field content of mesons, baryons, tetraquarks, and gluonium. Light-front holography
thus gives a remarkably simple analytic description of quark confinement, as well as nonperturba-
tive hadronic structure and dynamics.
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