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Dyson–Schwinger equations are an established, powerful non-perturbative tool for QCD. In the
Hamiltonian formulation of QCD they allow for variational calculations with non-Gaussian wave
functionals: by means of DSEs the various n-point functions, needed in expectation values of
observables like the Hamiltonian, can be expressed in terms of the variational kernels of the trial
Ansatz for the vacuum wave functional. Equations of motion for these variational kernels are
derived by minimizing the energy density, renormalized, and solved numerically. We determine
the chiral condensate from the renormalized quark propagator.
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1. Introduction

The two most outstanding features of Quantum Chromodynamics (QCD) at ordinary density
and temperature are colour confinement and the spontaneous breaking of chiral symmetry. Both
phenomena are strongly intertwined and, since they originate in the low-energy sector of the theory,
they cannot be approached by means of perturbative methods. Although we still lack a rigorous
understanding of these phenomena, we have been able to gain a good deal of insight by means of
lattice [1, 2] and continuum [3–10] studies.

In this talk we present recent results for the quark propagator in the Hamiltonian approach
to QCD in Coulomb gauge. It has been known for quite some time [11–16] that a linearly rising
potential between colour charges can trigger chiral symmetry breaking. A vacuum wave functional
which includes the coupling of the quarks to the transverse gluons improves the results towards the
phenomenological findings [10, 17–19]. Here we present a refinement of these investigations based
on the application of Dyson–Schwinger equations (DSEs) to treat non-Gaussian wave functionals
in a systematic way [20–22].

2. Hamiltonian Approach to Quantum Chromodynamics

The canonical quantization of QCD is performed in the temporal gauge Aa
0 = 0 and results in a

functional Schrödinger equation. The Gauss law operator enforces gauge invariance as a constraint
on the wave functionals. This constraint can be explicitly solved in Coulomb gauge and results in
the gauge-fixed Hamiltonian [23]

H = HYM+

∫
d3x ψ̂†(~x )

[
−i~α · ~∇+ βm−g~α · ~Aa (~x )ta

]
ψ̂(~x )

+
g2

2

∫
d3x d3y J−1

A ρa (~x ) JA Fab
A (~x,~y ) ρb (~y ),

(2.1)

where HYM is the Hamiltonian of pure Yang–Mills theory; β and αi are the usual Dirac matrices;
ta are the generators of the gauge group in the fundamental representation; and JA = Det(G−1

A ) is
the Faddeev–Popov determinant, with

[
Gab

A (~x,~y )
]−1
=

(
−δab∇2−g f acb Ac

i (~x )∂i
)
δ(~x−~y )

being the Faddeev–Popov operator. Here, g is the coupling constant, and f abc are the structure
constants of the su(Nc) algebra. The term in the second line of Eq. (2.1) represents a two-body
interaction of the total colour charge

ρa = ψ̂†taψ̂− i f abc Ab
i

δ

δAc
i

mediated by the so-called Coulomb kernel

Fab
A (~x,~y ) ≡

∫
d3z Gac

A (~x,~z )
(
−∇2

z

)
Gcb

A (~z,~y ). (2.2)
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3. Dyson–Schwinger Equations in the Hamiltonian Approach

Matrix elements of operators O in the Hamiltonian approach have the form

〈Φ|O |Ψ 〉 =
∫
DA JADξ†Dξ e−µ[ξ†,ξ]Φ∗[A, ξ†, ξ]OΨ ∗[A, ξ†, ξ]. (3.1)

The gauge field integration runs over transverse configurations only and, in principle, should
be restricted to the first Gribov region; the presence of the Faddeev–Popov determinant JA is
a consequence of the gauge fixing. The fermion degrees of freedom are expressed through the
Grassmann fields ξ†, ξ, and µ is the corresponding integration measure (in Ref. [21] a coherent-
state representation was chosen). For the vacuum wave functional we make an Ansatz of the
form

Ψ [A, ξ†, ξ]C exp
{
−

1
2

SA[A]− Sf [A, ξ†ξ]
}
, (3.2)

where SA is a functional of the gauge field only, while Sf contains both the fermion and the gluon
fields. Once functional derivatives which might be present in the operator O in Eq. (3.1) have
acted onto the wave functional, the expectation values in the Hamiltonian approach reduce to a path
integral of the form

〈 f 〉 =
∫
DA JADξ†Dξ e−SA−S f −S

∗
f
−µ f [A, ξ†, ξ]

which looks like a correlation function of a Euclidean field theory with “action”

S = SA+ Sf + S∗f + µ−Tr lnG−1
A .

Correspondingly, we can derive Dyson–Schwinger-like equations by starting from the identity

0 =
∫
DADξ†Dξ

δ

δφ

{
f [A, ξ†, ξ] e−S

}
. (3.3)

The “Dyson–Schwinger” equations derived from Eq. (3.3) are not quite equations of motion in
the usual sense but rather relate the Green functions of the theory to the (so far undetermined)
vacuum wave functional. To avoid possible confusion with the common terminology we name
them canonical recursive Dyson–Schwinger equations (CRDSEs).

4. The VacuumWave Functional

The explicit form of the vacuum wave functional is, of course, unknown. As already pointed
out, a perturbative evaluation, though possible [24], cannot grasp chiral symmetry breaking. We
will therefore solve the Schrödinger equation by means of the variational principle: the expectation
value of the Hamilton operator Eq. (2.1) is taken with an appropriately chosen Ansatz for the wave
functional, which depends on some variational kernels. Using the CRDSEs, the resulting vacuum
energy density is minimized with respect to the variational kernels, yielding a set of gap equations.

In this work we concentrate on the quark sector of the theory. For the fermionic part of the
vacuum wave functional Eq. (3.2) we make the Ansatz

Sf =

∫
d3x d3y ξ†+(~x )

{
β s(~x,~y )+g

∫
d3z

[
V (~x,~y;~z )αi +W (~x,~y;~z ) β αi

]
Aa
i (~z )ta

}
ξ−(~y ), (4.1)
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−1 = −1 + −
Figure 1: CRDSE for the quark propagator. Empty boxes stand for the variational kernels, fat dots for the
full (one-particle irreducible) vertices, and fat lines for fully dressed propagators.

where ξ± are the positive/negative energy components of the Grassmann spinor field. The functions
s, V and W are the variational kernels. The quark-gluon coupling in Eq. (4.1) contains both the
leading-order term ∝ αi known from perturbation theory [25] as well as a further Dirac structure
∝ βαi, which will turn out to be realized only in the chirally broken phase. The first term in
Eq. (4.1) is a BCS-type of wave functional, already used in the Coulomb-gauge pairing model
and its extensions [11–16]. Early calculations [17, 18] in the quark sector used an Ansatz similar
to Eq. (4.1) where, however, only the leading-order Dirac structure αi was considered (W = 0).
The resulting equations were plagued by linear divergences, while keeping both Dirac structures
(V , 0, W , 0) removes all UV divergences from the quark gap equation. With the Ansatz given
by Eqs. (3.2), (4.1) we find the quark propagator equation represented diagrammatically in Fig. 1.

5. Quark Mass Function and Chiral Condensate

In the evaluation of the energy density one major approximation is made: we replace the full
quark-gluon vertex by the bare one, which is the kernel appearing in the vacuum wave functional
Eq. (4.1).1 While this might look like an excessively crude approximation, especially given our
experience with Landau gauge calculations, one must keep in mind that in Coulomb gauge the
dominating interaction is mediated by the (strongly IR divergent) Coulomb kernel Eq. (2.2). The
CRDSE for the quark-gluon vertex is nevertheless currently under investigation. The Coulomb
kernel is approximated by its Yang–Mills expectation value and parametrized by the form

g2F (~p) =
8πσC

(~p2)2 +
αs

~p2 , (5.1)

which is supported by the variational calculation in the Yang–Mills sector [9].
The variational equations for the vector kernelsV andW can be explicitly solved in terms of the

scalar kernel s and the gluon propagator; the remaining gap equation for the scalar kernel s must be
solved numerically. It turns out that the second vector kernel W is crucial not only to eliminate the
divergences from the gap equation but also to render the physical quark propagator multiplicatively
renormalizable.

The renormalization point dependent quark condensate is usually quoted in the MS scheme at
the renormalization scale µ = 2GeV. Solving the gap equation for the value αs (2GeV) = 0.30(1)
[27] yields the quark mass function shown in Fig. 2. The resulting chiral condensate and IR value
of the mass are

M (0) = 0.19
√
σC, 〈q̄q〉MS

µ=2GeV =
(
−0.31

√
σC

)3
.

1Note that “bare” must be understood in Dyson–Schwinger sense: the variational kernel is “bare” in the sense that
it represents the leading-order term in the DSE for the quark-gluon vertex. The kernel itself is, however, determined by
the minimization of the energy density and is thus principally non-perturbative.
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Figure 2: Mass function of the renormalized quark propagator.

The scale in our calculations is fixed by the Coulomb string tension σC occurring in the colour
Coulomb potential Eq. (5.1). Lattice and continuum calculations [28–30] quote values of the
Coulomb string tension from 2.5 to as large as 4 times the Wilson string tension σ = (440MeV)2,
which gives us

√
σC in the range from 696MeV to 880MeV. This yields

M (0) = 135 to 170MeV, 〈q̄q〉MS
µ=2GeV = (−216MeV)3 to (−270MeV)3.

6. Mass Function in the Full and Static Propagator

While our result for the chiral condensate is in good agreement with findings from lattice
simulations and chiral perturbation theory calculations [1, 2, 31–33], the infrared value of the mass
function is much smaller than the expected value of roughly 300MeV, i.e. around the value of
the constituent quark mass. However, this naive expectation is misleading, since the Hamiltonian
approach deals with static propagators.

Let us clarify this point with an example in Landau gauge, where the (Euclidean) quark
propagator can be written as

S(p) =
1

−i/pA(p2)+ B(p2)
=

1
A(p2)

i/p+M (p2)
p2+M2(p2)

.

The quark mass function M is defined as M (p2) = B(p2)/A(p2), and at tree level we have A= 1 and
B =M =m, with m being the bare current quarkmass. The static, i.e. equal-time propagator S3(~p) is
obtained from the full one S(p) by integrating out the energy component p4 of the four-momentum

S3(~p) =
∫

dp4
2π

S(p) = i~γ · ~p
∫

dp4
2π

1
A(p2

4 + ~p
2)

1
p2

4 + ~p
2+M2(p2

4 + ~p
2)

+

∫
dp4
2π

1
A(p2

4 + ~p
2)

M (p2
4 + ~p

2)

p2
4 + ~p

2+M2(p2
4 + ~p

2)
.

In complete analogy to the definition of the quark mass function M we can introduce the equal-time
mass function M3(~p2) as ratio of the coefficients of the 1 and γi terms of the equal-time propagator,
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Figure 3: Comparison between the full mass function M (p2) in Landau gauge (continuous line) and the
mass function M3(~p2) of the equal-time propagator (dashed line). (Landau gauge data courtesy ofM. Huber.)

yielding

M3(~p2) =

∫ ∞

0
dp4

1
A(p2

4 + ~p
2)

M (p2
4 + ~p

2)

p2
4 + ~p

2+M2(p2
4 + ~p

2)∫ ∞

0
dp4

1
A(p2

4 + ~p
2)

1
p2

4 + ~p
2+M2(p2

4 + ~p
2)

. (6.1)

For typical results for the Landau gauge quark propagator we find that M3(0) lies between 50% and
60% of M (0), see Fig. 3.

The situation might be similar in Coulomb gauge, where the propagator takes the form

S−1(p) = −iγ4p4 At (p4, ~p)− i~γ · ~pAs (p4, ~p)− iγ4p4~γ · ~pAd (p4, ~p)+ B(p4, ~p).

Since Coulomb gauge is non-covariant, the propagator depends separately on p4 and ~p, and has
therefore fourDirac components instead of two. The mixed structure γ4γi does not arise at one-loop
level in perturbation theory [26] and is not found in lattice calculations [34, 35] either; therefore we
will set Ad = 0 in the following. The propagator in Coulomb gauge takes therefore the form

S(p) =
iγ4p4 At (p4, ~p)+ i~γ · ~pAs (p4, ~p)+ B(p4, ~p)

p2
4 A2

t (p4, ~p)+ ~p2 A2
s (p4, ~p)+ B2(p4, ~p)

.

The mass function of the four-dimensional propagator can be defined by B(p4, ~p)/As (p4, ~p). Anal-
ogously to Eq. (6.1) the equal-time mass function in Coulomb gauge is given by

M3(~p) =

∫ ∞

0
dp4

B(p4, ~p)
p2

4 A2
t (p4, ~p)+ ~p2 A2

s (p4, ~p)+ B2(p4, ~p)∫ ∞

0
dp4

As (p4, ~p)
p2

4 A2
t (p4, ~p)+ ~p2 A2

s (p4, ~p)+ B2(p4, ~p)

.

We expect that also in Coulomb gauge M3(~p) is smaller than the mass extracted from the four-
dimensional propagator.
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7. Conclusions

The approach to Hamiltonian QCD by means of Dyson–Schwinger equations, presented first
in Ref. [20] in the framework of pure Yang–Mills theory and generalized to full QCD in Ref. [21],
has been applied to an Ansatz for the vacuum wave functional which in addition to the usual quark-
gluon coupling includes a non-trivial Dirac structure. This additional term, which in non-zero
only in the chirally broken phase, removes the divergences from the gap equation and ensures the
multiplicative renormalizability of the quark propagator. We have also demonstrated that the mass
function extracted from the static propagator is considerably smaller than the one extracted from
the four-dimensional propagator.
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