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Ghost Sector in Minimal LCG Attilio Cucchieri

1. Why Study the Linear Covariant Gauge on the Lattice?

A big effort has been made in the last decades in order to understand the infrared properties

of Yang-Mills theories from the study of their Green’s functions, notably the gluon and the ghost

propagators (see, e.g., [1] and references therein). To this end, several gauge-fixing conditions

have been considered: Landau gauge, Coulomb gauge, λ -gauge, maximal Abelian gauge, etc.

In particular, in Landau gauge, the so-called Gribov-Zwanziger (GZ) confinement scenario has

captivated a lot of attention [2]. A natural generalization of Landau gauge is the linear covariant

gauge (LCG). Recently, a possible way of extending the GZ approach (in the continuum) to LCG

has been proposed [3]. The resulting theory is characterized by an exact nilpotent nonperturbative

BRST symmetry [4].

For the moment, numerical simulations have focused on the implementation of the LCG on

the lattice [5, 6, 7, 8] and on the study of the gluon propagator [7, 9, 10]. On the other hand, it is

still an open problem how to define the Faddeev-Popov (FP) matrix for LCG on the lattice. This is

the goal of our study. Preliminary results have been presented in [11, 12]. Some early results were

also presented in [13].

2. Minimal Linear Covariant Gauge

In order to impose the LCG on the lattice, one should first recall that the lattice Landau gauge,

which is a special case of the LCG, is obtained by minimizing the functional (see, e.g., [14])

ELG[Uµ ,g] ≡ −ℜTr∑
x

d

∑
µ=1

U
g
µ(x) ≡ −ℜTr∑

x

d

∑
µ=1

g(x)Uµ(x)g†(x+ eµ) . (2.1)

One can interpret the Landau-gauge functional as a spin-glass Hamiltonian for the “spin variables”

g(x) with a “random interaction” given by the link variables Uµ(x). This suggests the existence of

several local minima for ELG[Uµ ,g]. The set of these local minima, known as Gribov copies [2, 15,

16], defines the first Gribov region Ω. From the second variation of the minimizing functional, we

define the Landau FP operator [16]

M
bc(x,y) ≡

d

∑
µ=1

{

Γbc
µ (x)

[

δx,y − δx+eµ ,y

]

+ Γbc
µ (x− eµ)

[

δx,y − δx−eµ ,y

]

−
N2

c −1

∑
e=1

f bec
[

Ae
µ(x− eµ/2)δx−eµ ,y − Ae

µ(x+ eµ/2)δx+eµ ,y

]

}

, (2.2)

which is symmetric (under the simultaneous exchanges b↔ c and x↔ y) and semi-positive definite.

In the above equation we used the definition

Γbc
µ (~x) ≡ Tr

[

λ b λ c + λ c λ b

4

Uµ(~x) + U
†
µ(~x)

2

]

, (2.3)

where {Uµ(~x)} is the gauge-fixed configuration and the matrices λ b are the N2
c − 1 traceless Her-

mitian generators of the gauge group SU(Nc), normalized such that Tr(λ bλ c) = 2δ bc. Note that for
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the usual generators λ̃b with normalization Tr(λ̃bλ̃c) = δbc/2, we have

λ̃b =
λb

2
. (2.4)

We also defined the lattice gauge field through the relations

Aµ(~x+~eµ/2) ≡
1

2 i

[

Uµ(~x)−Uµ(~x)
†
]

− 1⊥
Tr

2 iNc

[

Uµ(~x)−Uµ(~x)
†
]

, (2.5)

Ab
µ(~x+~eµ/2) =

1

2
Tr [Aµ(~x+~eµ/2)λb ] , (2.6)

where 1⊥ is the identity matrix.

It is important to note that one can write the Landau FP operator (2.2) as [11]

M =
1

2
(M+ + M− ) , (2.7)

with

(M+ γ )b (~x) ≡ −
d

∑
µ=1

[

(

Dµ γ
)b
(~x)−

(

Dµ γ
)b
(~x−~eµ)

]

≡ −
d

∑
µ=1

[

∇
(−)
µ

(

Dµ γ
)

]b

(~x) (2.8)

and

(M− γ )b (~x) ≡
d

∑
µ=1

{

DT
µ

[

γ b(~x+~eµ) − γ b(~x)
]}

≡
d

∑
µ=1

[

DT
µ

(

∇
(+)
µ γ

)]b

(~x) . (2.9)

Here,

Dbc
µ (~x,~y) ≡ Γbc

µ (~x)
[

δ~x+~eµ ,~y − δ~x,~y

]

−
N2

c −1

∑
e=1

f bec Ae
µ(~x+~eµ/2)

[

δ~x+~eµ ,~y + δ~x,~y

]

(2.10)

is the lattice gauge-covariant derivative [16], which implies the transpose lattice gauge-covariant

derivative

(

DT
µ

)bc
(~x,~y) ≡ Γbc

µ (~x−~eµ)δ~x−~eµ ,~y − Γbc
µ (~x)δ~x,~y

+
N2

c −1

∑
e=1

f bec
[

Ae
µ(~x+~eµ/2)δ~x,~y + Ae

µ(~x−~eµ/2)δ~x−~eµ ,~y

]

. (2.11)

We have also indicated with ∇
(+)
µ [respectively ∇

(−)
µ ] the usual forward (respectively backward)

lattice derivative. Since the transpose of the backward lattice derivative ∇
(−)
µ is given by −∇

(+)
µ ,

it is evident that M T
− = M+ and the matrix M in Eq. (2.7) can be written as

(

M++M T
+

)

/2 =
(

M T
− +M−

)

/2, which is clearly symmetric (and real).

In turn, the lattice LCG condition can be obtained by minimizing the functional [7]

ELCG[Uµ ,g,Λ] = ELG[Uµ ,g] + ℜTr∑
x

ig(x)Λ(x) , (2.12)

2
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where the functions Λb(x) are real-valued, generated using a Gaussian distribution with width ξ 1/2.

By considering a one-parameter subgroup

g(x,τ) = exp

[

iτ
N2

c −1

∑
b=1

γ b(x)λ b

]

, (2.13)

it is easy to check that the stationarity condition implies the lattice LCG condition

∇ ·Ab(x) ≡
d

∑
µ=1

Ab
µ(x+ eµ/2) − Ab

µ(x− eµ/2) = Λb(x) , (2.14)

which gives, in the formal continuum1 limit a → 0, the gauge condition a ∑µ ∂µAb
µ(x) = Λb(x). It

is important to stress that the LCG functional ELCG[Uµ ,g,Λ] is linear in the gauge transformation

{g(x)}. This allows us to naturally extend to the LCG case the gauge-fixing algorithms used in

Landau gauge [17]. On the other hand, the standard compact discretization (2.5) for the gauge field

Ab
µ(x+eµ/2) implies that this field is bounded, so that ∇ ·Ab(x) is also a bounded quantity. This is

in contrast with the Λb(x) functions, which are generated using a Gaussian distribution and, there-

fore, are unbounded. Thus, one can face convergence problems when a numerical implementation

of the LCG is attempted [7, 8, 9].

The continuum gauge field Âµ(~x) is usually defined through the relation

Uµ(~x) ≡ exp
[

iag0 Âµ(~x+~eµ/2)
]

, (2.15)

where g0 is the bare coupling constant. Then, Eq. (2.14) yields a2g0 ∑d
µ=1

[

∂µ Âb
µ(~x)+O(a2)

]

=

Λb(~x) in the formal continuum limit a → 0. On the other hand, the usual gauge field in the contin-

uum limit —i.e. when the generators λ̃b are considered [see Eq. (2.4)]—is given by

2 Âb
µ(~x) ≈ 2Ab

µ(~x)/(ag0) . (2.16)

Thus, with our notation, the continuum functions Λ̂b(~x) satisfy the relation 2∑d
µ=1 ∂µ Âb

µ(~x)= Λ̂b(~x)

and we obtain

a2 g0 Λ̂b(~x) ≈ 2Λb(~x) . (2.17)

Then, in the limit a → 0, it is easy to show [11] that the expression

1

2ξ ∑
x

N2
c −1

∑
b=1

[

Λb(x)
]2

≡
β

Nc ξ̂
∑
x

N2
c −1

∑
b=1

[

2Λb(x)
]2

4
(2.18)

becomes

1

2 ξ̂

∫

ddx

N2
c −1

∑
b=1

[Λ̂b(x)]2 . (2.19)

Here, β = 2Nc/(a
4−dg2

0) in the lattice parameter entering the Wilson action for the SU(Nc) case,

in a generic d-dimensional space. Thus, the continuum and lattice widths, ξ̂ 1/2 and ξ 1/2, of the

corresponding Gaussian distributions are related through the expression ξ ≡ ξ̂ Nc/(2β ). This gives

1As usual, we indicate with a the lattice spacing.
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ξ < ξ̂ when Nc < 2β . This inequality is satisfied for Nc = 2,3 and for typical values of β in the

scaling region.

A few numerical studies of the gluon propagator have been carried out, using the above lattice

formulation for LCG [7, 9]. In particular, it has been checked, for the SU(2) and SU(3) gauge

groups, that the longitudinal propagator Dl(p2) satisfies the relation p2Dl(p2) = ξ , as predicted by

perturbation theory. At the same time, the transverse gluon propagator Dt(p2) has shown a clear

dependence on the gauge parameter ξ , i.e. Dt(0) decreases as ξ increases. Finally, Dt(0) decreases

if the lattice volume V increases [7], as in Landau gauge. These results are in agreement with the

numerical data obtained in Refs. [6, 10], using a different formulation for the lattice LCG, and with

several analytic predictions [3, 18, 19].

3. The Ghost Sector

In order to define the ghost sector in lattice minimal LCG, one should first recall that, in the

continuum, there are in principle three different possible setups for the LCG (see, e.g., Appendix

A in Ref. [20]):

1) complex ghost fields c = c†, giving the the FP matrix −∂ ·Dbc and a non-Hermitian La-

grangian density;

2) complex ghost fields c = c† and a symmetric FP matrix −(∂ ·Dbc+Dbc ·∂ )/2, with a quartic

ghost self-interaction term in the Lagrangian density;

3) real independent ghost/anti-ghost fields u, iv and the effective Hermitian FP matrix

i

2

(

0 −∂ ·Dbc

Dbc ·∂ 0

)

≡ iM . (3.1)

On the lattice, if one follows the same procedure used in Landau gauge —i.e. if one evaluates

the second variation of the functional ELCG[Uµ ,g,Λ], defined in Eq. (2.12), using the one-parameter

subgroup (2.13)—it is immediate to see [11, 12, 13] that the term ig(x)Λ(x) does not contribute to

the FP matrix. Thus, one is left with the second variation of the (Landau-gauge) term ELG[Uµ ,g],

yielding the usual symmetric Landau FP matrix M , defined in Eq. (2.2). As we have seen in the

previous section, this FP matrix can also be written as

M = −
d

∑
µ=1

1

2

[

∇
(−)
µ Dµ + DT

µ

(

∇
(−)
µ

)T
]

, (3.2)

which corresponds to the symmetric FP matrix of case 2) above. On the other hand, it is not

clear how a quartic ghost self-interaction term could be obtained on the lattice using the approach

considered here. Let us stress that the above matrix M has real non-negative eigenvalues and real

eigenvectors, since it is real and symmetric (and, therefore, it is Hermitian).

A possible lattice discretization of the FP matrix −∂ ·Dbc of case 1) is given by the matrix in

Eq. (2.8), which can be written as

M
bc
+ (x,y) ≡ M

bc(x,y) +
N2

c −1

∑
e=1

f becΛe(x)δx,y , (3.3)

4
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where we used the gauge condition (2.14) and f bce are the (real) structure constants of the SU(Nc)

gauge group, defined through the commutation relations
[

λ b,λ c
]

≡ 2i∑
N2

c −1

e=1 f bceλ e. On the other

hand, the extra term in Eq. (3.3) is skew-symmetric under the simultaneous exchanges b ↔ c and

x ↔ y, and it cannot be obtained from a second variation, i.e. it should be added by hand! It is

important to note that the matrix M+ has complex-conjugate eigenvalues (and eigenvectors) with

a non-negative real part. See Ref. [11, 12] for more details about this setup.

Finally, when considering the continuum case 3), one should note that the effective FP matrix

M, defined in Eq. (3.1), is also real and skew-symmetric and, therefore, it cannot be obtained

directly from a second variation of any minimizing functional. On the other hand, since M bc(x,y)

is real and symmetric, if one extends to the complex case the bilinear form

∑x,y
N2

c −1

∑
b,c=1

γ b
1 (x)M

bc(x,y)γ c
2 (y) , (3.4)

i.e. if one considers γ b
1 (x),γ

b
2 (x) ∈ C, then the corresponding sesquilinear form

(

M iM

−iM M

)

(3.5)

is a positive semi-definite Hermitian form. Moreover, its imaginary part is skew-symmetric and

gives us a natural way of obtaining the FP matrix

M =
1

2

(

0 M+

−M T
+ 0

)

=
1

2

(

0 M+

−M− 0

)

, (3.6)

which is a possible discretization of the matrix defined in Eq. (3.1). In this case, since M is skew-

symmetric, its eigenvalues are complex-conjugate and purely imaginary, and they are related to the

singular-value decomposition of M+, i.e. to the eigenvalues of M T
+M+.

4. Numerical Simulations: Ghost Propagator

We have done some preliminary tests, evaluating the ghost propagator using the FP matrix

defined in Eq. (3.3). Since the matrix M bc
+ (x,y) is real and not symmetric, we cannot use the con-

jugate gradient algorithm, as in Landau gauge. Thus, the inversion of the above FP matrix has been

done using [21] the bi-conjugate gradient stabilized algorithm, in the SU(2) case, and the general-

ized conjugate residual, in the SU(3) case. In both cases we used a point source [22]. Simulations

have been carried out with β = 2.4469 for SU(2) and β = 6.0 for SU(3), both corresponding [23]

to a lattice spacing a ≈ 0.1 fm. Preliminary results for these two gauge groups have been presented

in Ref. [11, 12]. One clearly sees from these data that the ghost propagator in LCG agrees, within

error bars, with the ghost propagator in Landau gauge (for the same lattice setup). This is in qual-

itative agreement with the theoretical predictions of Ref. [24] but in disagreement with the finding

of Refs. [18, 25].
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5. Conclusions

The numerical evaluation of the ghost propagator in LCG, using the FP matrix M bc
+ (x,y)

defined in Eq. (3.3), seems feasible. For the lattice setup considered in the simulations presented

in Ref. [11, 12], the results are essentially in agreement with the corresponding data in Landau

gauge. Of course, simulations at larger physical volumes and different gauge-fixing parameters ξ

should be done before one can conclude that this is indeed the case. At the same time, it would be

important to extend these numerical simulations to the cases 2) and 3), discussed in Sec. 3. Finally,

one should try to understand how the first Gribov region Ω can be defined in lattice minimal LCG,

i.e. if the GZ approach can be extended to the LCG on the lattice.
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