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In this talk we consider the mass-deformed Yang-Mills theory in the covariant gauge which is ob-
tained by just adding a gluon mass term to the Yang-Mills theory with the covariant gauge fixing
term and the associated Faddeev-Popov ghost term. First, we reconfirm that the decoupling so-
lution in the Landau gauge Yang-Mills theory is well reproduced from the mass-deformed Yang-
Mills theory by taking into account loop corrections. Second, we show that the mass-deformed
Yang-Mills theory is obtained as a gauge-fixed version of the gauge-invariantly extended theory
which is identified with the gauge-scalar model with a single fixed-modulus scalar field in the
fundamental representation of the gauge group. This equivalence is obtained as a consequence
of the gauge-independent Brout-Englert-Higgs mechanism proposed recently by one of the au-
thors. Third, we show that the reflection positivity is violated for any value of the parameters in
the mass-deformed Yang-Mills theory to one-loop quantum corrections. Finally, we discuss the
implications for the existence of positivity violation/restoration crossover in light of the Fradkin-
Shenker continuity between Confinement-like and Higgs-like regions in a single confinement
phase in the gauge-scalar model on the lattice.
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Mass-deformed Yang-Mills theory Kei-Ichi Kondo

1. Introduction

It is still a challenging problem in particle physics to explain quark and gluon confinement in
the framework of quantum gauge field theories. The information on confinement is expected to
be encoded in the gluon and ghost propagators which are obtained by fixing the gauge. Recent
investigations have confirmed that in the Lorentz covariant Landau gauge the decoupling solution
is the confining solution of the Yang-Mills theory in the three- and four-dimensional spacetime,
while the scaling solution is realized in the two-dimensional spacetime. Therefore, it is quite
important to understand the decoupling solution in the Lorentz covariant Landau gauge. Of course,
there are so many approaches towards this goal. In this talk, we focus on the approach [1, 2] which
has been developed in recent several years and has succeeded to reproduce some features of the
decoupling solution with good accuracy. We call this approach the mass-deformed Yang-Mills
theory with the gauge fixing term or the massive Yang-Mills model in the covariant gauge.

However, the reason why this approach is so successful is not fully understood yet in our
opinion, although some attempts in this direction exist. In this talk we show based on the previous
paper [3, 4] that the mass-deformed Yang-Mills theory with the covariant gauge fixing term has the
gauge-invariant extension which is given by a gauge-scalar model with a single fixed-modulus
scalar field in the fundamental representation of the gauge group, if a constraint which we call
the reduction condition is satisfied. We call such a model the complementary gauge-scalar
model. This equivalence is achieved based on the gauge-independent description [3, 4] of the
Brout-Englert-Higgs (BEH) mechanism which does not rely on the spontaneous breaking of
gauge symmetry. This description enables one to give a gauge-invariant mass term of the gluon
field in the Yang-Mills theory which can be identified with the gauge-invariant kinetic term of the
scalar field in the complementary gauge-scalar model.

In the lattice gauge theory, it is known that the confinement phase in the pure Yang-Mills theory
is analytically continued to the Higgs phase in the relevant gauge-scalar model, which is called the
Fradkin-Shenker continuity [5] as a special realization of the Osterwalder-Seiler theorem [6].
There are no local order parameters which can distinguish the confinement and Higgs phases. There
is no thermodynamic phase transition between confinement and Higgs phases, in sharp contrast to
the adjoint scalar case where there is a clear phase transition between the two phases. Therefore,
Confinement and Higgs phases are just subregions of a single Confinement-Higgs phase [7, 8].

It is known that the gluon propagator in the pure Yang-Mills theory exhibits the violation of
reflection positivity. This fact was directly shown by the numerical simulations on the lattice, e.g.,
in the covariant Landau gauge [9, 10]. We can show analytically that the reflection positivity of the
gluon Schwinger function is violated for any value of the parameters in the massive Yang-Mills
model with one-loop quantum corrections being included, see [11] for the details. We discuss the
implications for the existence of positivity violation/restoration crossover in light of the Fradkin-
Shenker continuity between Confinement-like and Higgs-like regions in a single confinement phase
in the gauge-scalar model on the lattice.

2. Massive Yang-Mills theory and its gauge-invariant extension

We introduce the mass-deformed Yang-Mills theory in the covariant gauge which is de-

1
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Mass-deformed Yang-Mills theory Kei-Ichi Kondo

fined just by adding the naive mass term Lm to the ordinary massless Yang-Mills theory in the
(manifestly Lorentz) covariant gauge L tot

YM,

L tot
YM =LYM +LGF +LFP +Lm,

LYM =− 1
4
F A

µνF Aµν ,

LGF =N A∂ µA A
µ +

α
2

N AN A,

LFP =iC̄ A∂ µDµ [A ]ABC B = iC̄ A∂ µ(∂µC A +g fABCA B
µ C C),

Lm =
1
2

M2A A
µ A µA, (2.1)

where A A
µ denotes the Yang-Mills field, N A the Nakanishi-Lautrup field and C A, C̄ A (A= 1, ...,dimG)

the Faddeev-Popov ghost and antighost fields, which take their values in the Lie algebra G of a
gauge group G with the structure constants fABC (A,B,C = 1, ...,dimG). We call this theory the
massive Yang-Mills model in the covariant gauge for short.

It is shown [11] that the massive Yang-Mills model in a covariant gauge has the gauge-
invariant extension given by the gauge-scalar model with a single radially-fixed (or fixed-modulus)
scalar field in the fundamental representation of a gauge group if the theory is subject to an appro-
priate constraint which we call the reduction condition. We call such a gauge-scalar model the
complementary gauge-scalar model. In other words, the complementary gauge-scalar model with
a single radially fixed fundamental scalar field reduces to the mass-deformed Yang-Mills theory in
a fixed gauge if an appropriate reduction condition is imposed. For G = SU(2), the complementary
gauge-scalar model is given by

LRF = LYM +Lkin, LYM =−1
2

tr[FµνF µν ], Lkin := (Dµ [A ]Φ)† · (Dµ [A ]Φ), (2.2)

with a single fundamental scalar field subject to the radially fixed condition,

f (Φ(x)) := Φ(x)† ·Φ(x)− 1
2

v2 = 0, (2.3)

where Φ(x) is the SU(2) doublet formed from two complex scalar fields ϕϕϕ 1(x),ϕϕϕ 2(x),

Φ(x) =

(
ϕϕϕ 1(x)
ϕϕϕ 2(x)

)
, ϕϕϕ 1(x),ϕϕϕ 2(x) ∈ C, (2.4)

where Dµ [A ] is the covariant derivative in the fundamental representation Dµ [A ] := ∂µ − igAµ .
This theory is supposed to obey the reduction condition,

χ(x) := Dµ [A ]W µ(x) = 0, (2.5)

where Dµ [A ] is the covariant derivative in the adjoint representation Dµ [A ] := ∂µ − ig[Aµ , ·].
Here Wµ(x) = Wµ [A (x),Φ(x)] is the massive vector field mode defined shortly in terms of Aµ

and Φ, which follows from the gauge-independent BEH mechanism. This gauge-scalar model is
invariant under the gauge transformation,

Aµ(x)→ A U
µ (x) :=U(x)Aµ(x)U(x)† + ig−1U(x)∂µU(x)†, Φ(x)→ ΦU(x) :=U(x)Φ(x). (2.6)

2
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It is more convenient to convert the scalar field into the gauge group element. For this purpose, we
introduce the matrix-valued scalar field Θ by adding another SU(2) doublet Φ̃ := εΦ∗ as

Θ(x) :=
(

Φ̃(x) Φ(x)
)
=
(

εΦ∗(x) Φ(x)
)
=

(
ϕϕϕ ∗

2(x) ϕϕϕ 1(x)
−ϕϕϕ ∗

1(x) ϕϕϕ 2(x)

)
, ε =

(
0 1
−1 0

)
. (2.7)

Then we introduce the normalized matrix-valued scalar field Θ̂ by

Θ̂(x) = Θ(x)/
(

v√
2

)
, v > 0. (2.8)

The above constraint (2.3) implies that the normalized scalar field Θ̂ obeys the conditions: Θ̂(x)†Θ̂(x)=
Θ̂(x)Θ̂(x)† = 111, and detΘ̂(x) = 1. Therefore, the normalized matrix-valued scalar field Θ̂ is an el-
ement of SU(2): Θ̂(x) ∈ G = SU(2). This is an important property to give a gauge-independent
BEH mechanism. The massive vector boson field Wµ ∈ G = su(2) is defined in terms of the orig-
inal gauge field Aµ ∈ G = su(2) and the normalized scalar field Θ̂ ∈ G = SU(2) as shown in a
previous paper [4],

Wµ(x) :=ig−1(Dµ [A ]Θ̂(x))Θ̂(x)† =−ig−1Θ̂(x)(Dµ [A ]Θ̂(x))†. (2.9)

According to the gauge-independent BEH mechanism [3, 4], the kinetic term of the scalar field Θ
is identical to the mass term of Wµ ,

Lkin =
1
2

tr((Dµ [A ]Θ(x))†Dµ [A ]Θ(x)) = M2tr(Wµ(x)W µ(x)), M = g
v
2
. (2.10)

3. Massive Yang-Mills theory and decoupling solutions

In order to reproduce the decoupling solution of the Yang-Mills theory in the covariant Lan-
dau gauge, we calculate one-loop quantum corrections to the gluon and ghost propagators in
the massive Yang-Mills model. The Nakanishi-Lautrup field N A can be eliminated LGF →
−1

2 α−1(∂ µA A
µ )2. The results in the Landau gauge is obtained by taking the limit α → 0 in the

final step of the calculations. Only in the Landau gauge α = 0 the massive Yang-Mills model with
a naive mass term Lm has the gauge-invariant extension. In order to obtain the gauge-independent
results in the other gauges with α ̸= 0, we need to include an infinite number of non-local terms in
addition to the naive mass term Lm for gluons, as shown in [11]. Therefore, the results obtained in
the Feynman gauge α = 1 from this theory must be different from those in the Landau gauge α = 0.
We confirm that this is indeed the case by examining the positivity violation/restoration transition
[11]. For comparison with the lattice data, we move to the Euclidean region and use kE to denote
the Euclidean momentum. We introduce the two-point vertex function Γ(2)

A as the inverse of the
propagator DT and the vacuum polarization function ΠT . For gluons, we adopt the renormalization
conditions. A renormalization condition adopted by Tissier and Wschebor [1] is written as

Γ(2)
A (kE = µ) = µ2 +M2, (3.1)

where µ is the renormalization scale. For ghosts, we impose the renormalization condition:

Γ(2)
gh (kE = µ) = µ2. (3.2)

3
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Figure 1: (Left) gluon propagator D̃T (k), (Right) ghost propagator ∆gh(k) for the SU(3) Yang-Mills theory
in the covariant Landau gauge.

The analytical results obtained by the massive Yang-Mills model (to one-loop order) was used to
fit numerical simulations on the lattice for the SU(3) Yang-Mills theory in the Landau gauge. See
Fig. 1. Both gluon and ghost propagators are well reproduced by a set of parameters (g,M)

g = 4.9, M = 0.54 GeV. (3.3)

The more details for the choice of the renormalization condition are given in [11, 12].

4. Positivity violation in the massive Yang-Mills model

The Osterwalder-Schrader (OS) axioms are properties to be satisfied for the Euclidean quan-
tum field theory formulated in the Euclidean space, which are the Euclidean version of the Wight-
man axioms for the relativistic quantum field theory formulated in the Minkowski spacetime. A
Wightman relativistic quantum field theory can be constructed from a set of Schwinger functions
(Euclidean Green’s functions) if they obey the Osterwalder-Schrader axioms. In particular, the ax-
iom of reflection positivity is the Euclidean counterpart to the positive definiteness of the norm in
the Hilbert space of the corresponding Wightman quantum field theory. If the positivity violation
exists, a particular Euclidean correlation function cannot have the interpretation in terms of stable
particle states, which is regarded as a manifestation of confinement. To demonstrate the violation
of reflection positivity in the OS axioms, one counterexample suffices. We consider a particu-
lar Schwinger function in the D-dimensional spacetime defined by the Fourier transform of the
Euclidean propagator D̃(kkkE ,kD

E )

∆(t) =
∫ +∞

−∞

dkD
E

2π
eikD

E tD̃(kkkE = 000,kD
E ). (4.1)

Therefore, non-positivity of the Schwinger function ∆(t) at some value of t leads to the positivity
violation. Consequently, the reflection positivity is violated for the gluon propagator. The corre-
sponding states cannot appear in the physical particle spectrum, suggesting gluon confinement.

Moreover, violation of reflection positivity has been directly observed by measuring the Schwinger
function on a lattice for D = 3 [9] and for D = 4, in both quenched (i.e., pure Yang-Mills theory)
and unquenched (i.e., QCD) cases [10]. In Fig. 2, we give the plot for the gluon propagator and
the resulting Schwinger function in the covariant Landau gauge α = 0 for the SU(3) Yang-Mills
theory for g = 4.9 and M = 0.54 GeV.

4
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Figure 2: The gluon propagator DT and the resulting Schwinger function ∆ in the covariant Landau gauge
for the SU(3) Yang-Mills theory with g = 4.9 and M = 0.54 GeV.
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Figure 3: The gluon propagator DT and the resulting Schwinger function ∆ in the covariant Landau gauge
for the SU(3) Yang-Mills theory with g = 6 and M = 0.5 GeV.
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Figure 4: The gluon propagator DT and the resulting Schwinger function ∆ in the covariant Landau gauge
for the SU(3) Yang-Mills theory with g = 3 and M = 0.5 GeV.

5. Positivity violation/restoration in the gauge-scalar model

For larger coupling constant g than the physical value (3.3) in the Yang-Mills theory, the gluon
propagator D̃T(p) exhibits non-monotonic behavior. In fact, non-monotonicity of the propagator
D̃(k2) at some value of k2 leads to the positivity violation. In Fig. 3, the gluon propagator is given
for a different set of parameters g = 6.0 and M = 0.5 GeV. The gluon propagator clearly shows
sizable non-monotonic behavior. Then the Schwinger function ∆(t) shows the stronger violation
of positivity, which is to be compared with Fig. 2 for g = 4.9 and M = 0.54 GeV. For quite large
coupling constant g, the gluon propagator D̃T(p) becomes singular at two values of p and takes
negative values in between. Therefore, this singular behavior affects the resulting Schwinger func-

5
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Figure 5: Distribution of positivity violation in the covariant Landau gauge α = 0 for the SU(2) Yang-Mills
theory.(left) in the plane (g2, M2

µ2 ) , (right) in the plane (1/g2, M2/µ2

g2 ).

tion ∆(t). This feature will be an artifact due to the limitation of one-loop calculations. Therefore,
we exclude this strong coupling region from the following considerations.

For smaller coupling constant g = 3 and M = 0.5 than the physical value in the Yang-Mills
theory, the gluon propagator D̃T(p) is monotonically decreasing in p and the resulting Schwinger
function seems to be positive as the numerical calculations demonstrate in Fig. 4. For smaller
coupling constant, therefore, this numerical result seems to show that the positivity is not violated
and is restored. In fact, if the positivity holds ρ(σ2) ≥ 0, the propagator D̃(k2) is monotonically
decreasing function of k2. The result of Fig. 4 seems to be consistent with this statement. However,
it should be remarked that the monotonic propagator does not guarantee the positivity, since the
converse is not necessarily true. In fact, we can prove analytically that the reflection positivity of
the gluon Schwinger function is violated for any value of the parameters g and M in the massive
Yang-Mills model with one-loop quantum corrections being included, see [11, 12] for the details.

We examine the magnitude of positivity violation in the two-dimensional phase diagram of the
complementary SU(2) gauge-scalar model. We draw a symbol − in blue (positivity violation) on a
point in the two-dimensional phase plane (g2, M2

µ2 ) or (1/g2, M2/µ2

g2 ) if the Schwinger function ∆(t)
becomes negative in some regions of t at the point, as indicated in Fig. 3. We draw a symbol + in
red (positivity restoration) on a point in the two-dimensional phase plane (g2, M2

µ2 ) or (1/g2, M2/µ2

g2 )

if the Schwinger function ∆(t) is non-negative for any t ∈R at the point, as indicated in Fig. 4. The
symbol × in orange is used to show the point on which the solution is not reliable to be excluded
from considerations. Fig. 5 is the plot for the distribution of positivity violation in the covariant
Landau gauge α = 0 for the SU(2) Yang-Mills theory under the renormalization condition [TW]. If
g2 → 0, the theory has no interaction and the propagator is nothing but the free massive propagator
D(k) = 1

k2+M2 . For small g2 and large M2/µ2, namely, for large 1/g2 and large v2 ≃ (M2/µ2)/g2,
the Schwinger function exhibits small violation of positivity. This region corresponds to the Higgs-
like region in the gauge-scalar model. For large g2 and small M2/µ2, namely, for small 1/g2 and
small v2 ≃ (M2/µ2)/g2, the Schwinger function exhibits large violation of positivity. This region
corresponds to the Confinement-like region in the gauge-scalar model.
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6. Conclusion and discussion

We have examined the mass-deformed Yang-Mills theory in the covariant Landau gauge (which we
called the massive Yang-Mills model) in order to reproduce the decoupling solution as the confining
solution of the pure Yang-Mills theory. Indeed, the massive Yang-Mills model well reproduces the
decoupling solution for gluon and ghost propagators (at least) in the low-momentum region by
choosing a suitable set of two parameters g and M.

The massive Yang-Mills model in the covariant Landau gauge has the gauge-invariant exten-
sion, namely, the complementary gauge-scalar model with a radially fixed fundamental scalar field
which is subject to an appropriate reduction condition. In other words, the gauge-scalar model with
a radially fixed fundamental scalar field subject to the reduction condition can be gauge-fixed to
become equal to the mass-deformed Yang-Mills theory in the covariant Landau gauge. The gauge-
invariant extension of a non-gauge theory is performed through the gauge-independent description
of the BEH mechanism [4] without relying on the spontaneous symmetry breaking which was first
proposed for the adjoint scalar field [3]. More details will be given in [11, 12].
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