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On the analytic structure of QCD propagators Peter Lowdon

1. Introduction

The non-perturbative behaviour of propagators involving coloured fields plays an important role in
many areas of quantum chromodynamics (QCD), from the dynamics of quark-gluon plasma to the
nature of confinement itself [1, 2, 3, 4, 5, 6]. Nevertheless, the overall analytic structure of these
objects remains largely unknown. In order to gain a better understanding of the general charac-
teristics of these objects one necessarily requires a non-perturbative approach. An important such
example are local formulations of quantum field theory (QFT), the construction of which are based
on a series of physically motivated axioms [7]. A significant advantage of this framework is that
the axioms are assumed to hold independently of the coupling regime, allowing non-perturbative
features to be derived in a purely analytic manner. Numerical non-perturbative techniques such as
lattice Monte-Carlo simulations and functional methods have also played an essential role in help-
ing to unravel the structure of QCD propagators, especially in recent years [3, 8, 9, 10, 11, 12, 14].
However, significant progress has been achieved when local QFT has been used both as a guide
for the analytic input required for these numerical techniques, and also to help interpret the corre-
sponding results. Here we report on recent progress [6, 15, 16] in establishing the structural form
of QCD propagators using a local QFT approach.

2. The general structure of correlators in local QFT

In local formulations of QFT a characteristic of central importance is that correlators are distribu-
tions [7]. Distributions are a generalisation of functions, and among other things this implies that
they can possess a broader range analytic properties compared to regular functions. Due to the
Lorentz transformation properties of the fields φ1 and φ2 it follows that the Fourier transform of
any correlator T̂(1,2)(p) = F [〈0|φ1(x)φ2(y)|0〉] has the decomposition

T̂(1,2)(p) =
N

∑
α=1

Qα(p) T̂ α

(1,2)(p) (2.1)

where Qα(p) are Lorentz covariant polynomial functions1 of p carrying the same Lorentz index
structure as φ1 and φ2, and T̂ α

(1,2)(p) are Lorentz invariant distributions2 [17]. Due to the decompo-
sition in Eq. (2.1), the key to defining any correlator is to understand the properties of the Lorentz
invariant distributional components. In principle these objects could have a wide variety of differ-
ent properties, but it turns out that the physical requirement for states in the theory to have positive
energy implies that the components T̂ α

(1,2)(p) must vanish outside the closed forward light cone
V+ = {pµ | p2 ≥ 0, p0 ≥ 0}, and can therefore be written in the following general manner [17]:

T̂ α

(1,2)(p) =
∫

∞

0
dsθ(p0)δ (p2− s)ρα(s)+Pα(∂

2)δ (p) (2.2)

where Pα(∂
2) is a polynomial of finite order in the d’Alembert operator ∂ 2 = gµν

∂

∂ pµ

∂

∂ pν
, and ρα(s)

are distributions with support in R+. Eq. (2.2) is the so-called spectral representation of T̂ α

(1,2)(p),

1For example, when φ1 = ψ and φ2 = ψ there are two such functions: Q1(p) = I and Q2(p) = /p.
2Lorentz invariant distributions satisfy the property T̂ α

(1,2)(Λp) = T̂ α

(1,2)(p) for any Lorentz transformation Λ.
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and ρα(s) the spectral density. If one instead considers the time-ordered correlator (propagator)
D̂(1,2)(p) =F

[
θ(x0− y0)〈0|φ1(x)φ2(y)|0〉+σ(1,2)θ(y0− x0)〈0|φ2(y)φ1(x)|0〉

]
, where σ(1,2) =±1

depending on the spin statistics of the fields, it follows from Eq. (2.2) that the corresponding
Lorentz invariant components D̂α

(1,2)(p) have the structure

D̂α

(1,2)(p) = i
∫

ds
ρα(s)

p2− s+ iε
+Pα(∂

2)δ (p) (2.3)

The first term has the familiar looking Källén-Lehmann spectral form, whereas the second term is
purely singular. In theories for which the space of states have a positive-definite inner product it
turns out that Pα(∂

2)δ (p) can only contain terms proportional to δ (p) [17]. An important feature
of gauge theories such as QCD is that the gauge symmetry provides an obstacle to the locality of
the theory [18]. In order to consistently quantise the theory one is therefore left with two options:
explicitly preserve locality, or allow non-local fields. A general feature of local quantisations is
that additional degrees of freedom are introduced into the theory, resulting in a space of states with
an indefinite inner product. The prototypical example is the Becchi-Rouet-Stora-Tyutin (BRST)
quantisation of QCD, where the space of states contains negative-norm ghost states [2]. Although
many features of positive-definite inner product QFTs are preserved in BRST quantised QCD, the
existence of an indefinite inner product can lead to significant changes to the structure of propaga-
tors. In particular, Pα(∂

2)δ (p) can potentially contain terms involving derivatives of δ (p) [6]. The
relevance of these types of contribution was first recognised in [19, 20], where it was proven that
their presence can fundamentally alter the asymptotic behaviour of correlators, and in fact cause the
correlation strength between clusters of states to grow with distance. For clusters of coloured states
this provides a mechanism which can guarantee their absence from the asymptotic spectrum, since
a growth in correlation strength between coloured states prevents the independent measurement of
either of these states at large distances. In other words, the presence of these type of contributions
are indicative of confinement [5].

3. Dynamical constraints on the QCD propagators

In light of the general structural features of propagators in locally quantised QCD, determining the
behaviour of propagators associated with coloured fields is important for understanding the non-
perturbative dynamics of the theory, and in particular confinement. Since the quark, gluon and
ghost fields parametrise the coloured degrees of freedom in this theory, the propagators associated
with these fields play a crucial role. With this motivation in mind, in Refs. [6, 15, 16] a local QFT
approach was adopted in order to derive the most general structural form of these QCD propaga-
tors, and the constraints imposed on them by the dynamical properties of the theory3.

In the case of the quark propagator Ŝi j
F (p) = F

[
〈0|T{ψ i(x)ψ j(y)}|0〉

]
it follows from Eqs. (2.2)

and (2.3) that the propagator can be written [15]

Ŝi j
F (p) = i

∫
∞

0

ds
2π

[
ρ

i j
1 (s)+ /pρ

i j
2 (s)

]
p2− s+ iε

+
[
Pi j

1 (∂ 2)+ /pPi j
2 (∂ 2)

]
δ (p) (3.1)

3For an alternative approach see e.g. [21].
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It turns out that the equations of motion impose constraints both on the form of the spectral densi-
ties, and the coefficients of the potential singular terms. In Ref. [15] it was demonstrated that these
constraints can be derived by considering the Dyson-Schwinger equation, which in momentum
space has the form

(/p−m)Ŝi j
F (p) = iδ i jZ−1

2 + K̂i j(p) (3.2)

where Z2 is the quark field renormalisation constant, and K̂i j(p) is the current-quark propagator.
By inserting the spectral representation of Ŝi j

F (p) and the corresponding representation of K̂i j(p)
one can match the different Lorentz components on both sides, and this give rise to a series of
constraints. After applying this procedure one finds that the coefficients of the singular terms in
the propagators are linearly related to one another, and that the quark spectral densities have the
following representation [15]

ρ
i j
1 (s) =

[
2πmδ

i jZ−1
2 −

∫
ds̃κ

i j
1 (s̃)

]
δ (s−m2)+κ

i j
1 (s) (3.3)

ρ
i j
2 (s) =

[
2πδ

i jZ−1
2 −

∫
ds̃κ

i j
2 (s̃)

]
δ (s−m2)+κ

i j
2 (s) (3.4)

These equalities explicitly demonstrate that both spectral densities contain a discrete mass compo-
nent, but that the coefficients in front of these components depend explicitly on the behaviour of
κ

i j
1 (s) and κ

i j
2 (s), both of which are related to the corresponding spectral densities of the current-

quark propagator K̂i j(p).

An analogous approach as applied to the quark propagator can also be used to constrain the ghost
propagator Ĝab

F (p) = F
[
〈0|T{Ca(x)Cb(y)}|0〉

]
[15]. In this case the propagator has the general

form

Ĝab
F (p) = i

∫
∞

0

ds
2π

ρab
C (s)

p2− s+ iε
+Pab

C (∂ 2)δ (p) (3.5)

and the momentum space Dyson-Schwinger equation is given by

−p2Gab
F (p) = δ

abZ̃−1
3 +Lab(p) (3.6)

where now Z̃3 is the ghost field renormalisation constant, and Lab(p) is the current-ghost propa-
gator. Inserting the spectral representations of these propagators into this equation one again finds
that the coefficients of the singular terms in both propagators are linearly related to one another,
and that the ghost spectral density is constrained to satisfy [15]:

ρ
ab
C (s) =

[
2πiδ abZ̃−1

3 −
∫

∞

0
ds̃κ

ab
C (s̃)

]
δ (s)+κ

ab
C (s) (3.7)

Eq. (3.7) demonstrates that the ghost spectral density contains a discrete massless component.
However, similarly to the quark spectral densities, the coefficient in front of this component is not
completely constrained since it depends on the integral of κab

C (s), which itself is determined by
the spectral function of Lab(p). Therefore, the presence or absence of a non-perturbative massless
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ghost pole is not so clear-cut.

The final QCD propagator of interest involves the gluon field. In this case the propagator has the
general form [6]

D̂abF
µν (p) = i

∫
∞

0

ds
2π

[
gµνρab

1 (s)+ pµ pνρab
2 (s)

]
p2− s+ iε

+
N

∑
n=0

[
cab

n gµν(∂
2)n +dab

n ∂µ∂ν(∂
2)n−1

]
δ (p)

(3.8)

The Dyson-Schwinger equation for this propagator is given by

−
[

p2g α
µ −

(
1− 1

ξ0

)
pµ pα

]
D̂abF

αν (p) = iδ abgµνZ−1
3 + Ĵab

µν(p) (3.9)

where Z3 is the gluon field renormalisation constant, Ĵab
µν(p) the current-gluon propagator, and ξ0

is the bare gauge fixing parameter. Again, by inserting the spectral representations of the gluon and
current-gluon propagators one obtains constraints. Similarly to the quark and ghost propagators,
Eq. (3.9) implies that the coefficients of the potential singular terms in the gluon propagator are
linearly related to those in Ĵab

µν(p). Moreover, the gluon spectral densities are constrained to satisfy
the relations

ρ
ab
1 (s)+ sρ

ab
2 (s) =−2πξ δ

ab
δ (s) (3.10)

ρ
ab
1 (s) =−2πδ

abZ−1
3 δ (s)+ ρ̃

ab
2 (s) (3.11)∫

∞

0
ds ρ̃

ab
2 (s) = 0 (3.12)

In contrast to both the quark and ghost spectral densities, Eq. (3.11) implies that ρab
1 (s) contains

an explicit massless contribution, and that the coefficient of this component is completely specified
by the value of the corresponding renormalisation constant. Since Z−1

3 is expected to vanish in
Landau gauge [3], this implies that massless gluons must therefore necessarily be absent from the
spectrum in this gauge. In the literature [8, 9, 12, 14, 24] it is often argued that the violation of
non-negativity of ρab

1 (s) in Landau gauge as a result of the sum rule4:
∫

dsρab
1 (s) = 0 is the reason

why gluons do not appear in the spectrum. However, from the structure of Eq. (3.11) it is apparent
that (continuous) non-negativity violations can only arise from the component ρ̃ab

2 (s), which has
vanishing integral [Eq. (3.12)]. Performing an identical analysis for the photon propagator it turns
out that this propagator satisfies identical constraints, and in particular the analogous component
ρ̃2(s) of the photon spectral density ρ1(s) has vanishing integral. This implies that potential non-
negativity violations are not QCD specific, and casts doubt on the hypothesis that these violations
in Landau gauge are the reason why gluons are absent from the spectrum.

4. Conclusions

Although the propagators in QCD play an important role in determining the non-perturbative char-
acteristics of the theory, the analytic behaviour of these objects remains largely unknown. It turns

4This sum rule is often referred to as the Oehme-Zimmermann superconvergence relation [22, 23].
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out that the dynamical properties of the quark, ghost and gluon fields, and in particular their cor-
responding Dyson-Schwinger equations, impose considerable constraints on the structure of these
propagators. In all of these cases singular terms involving derivatives of δ (p) are permitted, which
is particularly interesting in the context of confinement, and the general form of the correspond-
ing spectral densities are constrained. Besides the purely theoretical relevance of these results,
these constraints could also provide important input for improving existing parametrisations of the
propagators.
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