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The covariant variational approach to Yang-Mills theory is further developed. After discussing the
foundations of the method both at zero and finite temperature, we briefly recall the effective action
for the Polyakov loop and the critical properties of the deconfinement phase transition within this
approach. The thermodynamics of pure Yang-Mills theory are studied in detail and the resulting
equation of state is compared to lattice data. While there is good agreement in the deconfined
(high-temperature) phase, a small but non-zero pressure is predicted in the confined phase at low
temperatures, in contrast to physical expectations. We propose possible improvements to address
this issue. Finally, we discuss the combination of the variational approach with Dyson-Schwinger
techniques and argue that the method can be used as a tool to determine the optimal vertices for
a truncated set of Dyson-Schwinger equations. We briefly lay out how this technique could be
applied to Yang-Mills theory at zero temperature.
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1. Introduction

The low energy sector of quantum chromodynamics (QCD) and, in particular, its phase dia-
gram are among the most actively researched topics in elementary particle physics. Experimentally,
heavy ion collisions at the large hadron collider (LHC) are beginning to probe strongly interacting
matter at such high temperatures and baryon densities that the properties of the resulting quark-
gluon plasma can be studied in detail. By contrast, theoretical investigations of the full QCD
phase diagram through lattice simulations are still restricted to rather small densities due to the
sign problem. Alternative functional methods in the continuum are therefore very welcome. In
covariant gauges, the most widely used methods are functional renormalization group (FRG) flow
equations [1] and Dyson-Schwinger equations (DSE) [2], while extensions of the Faddeev-Popov
action through mass terms [3] or the Gribov-Zwanziger term [4] are also proposed. If we dispense
with manifest covariance, the Hamiltonian approach to QCD in Coulomb gauge [5] provides a
concise and physically transparent approach to QCD using variational techniques.

In a series of papers [6, 7, 8, 9], we have proposed an alternative continuum method which
combines the benefits of a variational approach with the simplicity of a manifestly covariant setup.
Starting from Ansätze for the Euclidean path integral measure, the method leads to a set of integral
equations for the low-order Green’s functions that can be conventionally renormalized. In this talk,
I will briefly discuss the fundamental ideas behind the variational approach and show that it gives
an excellent description of the Yang-Mills propagators at zero temperature, while the extension
to finite temperature can easily be achieved by standard techniques. I will then present results
for the effective action of the Polyakov loop, as well as the pressure and energy density of the
gluon plasma at finite temperature. While most thermal properties are correctly predicted (even
quantitatively), the pressure and energy density in the confined phase show significant deviations,
for which I propose possible improvements. Finally, I will give an outlook of how the variational
approach can be extended beyond the Gaussian Ansatz, and how this technique can be used to
optimize vertices in truncated DSEs.

2. Foundations of the covariant variational approach

Consider a theory of a quantum field A(x) which is described by a Euclidean action S[A]. We
will call S[A] the target action of the variational principle, to distinguish it from the trial action
R[A] introduced in the variational ansatz

dµR = NR ·dA exp
(
−R[A]

)
, (2.1)

where NR it a normalization constant that makes dµR a probability measure on function space. In-
tuitively, we think of R[A] as a simplified version of the original action, with variational parameters
{γ} that help to mitigate the error due to the replacement S→ R. More precisely, the variational
parameters {γ} in the ansatz R[A] are determined by the condition that the free action

F(µR) = 〈S[A]〉µR−W(µR)

W(µR) = 〈R[A]〉µR− lnNR (2.2)
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Figure 1: Schematic description of the variation principle in quantum field theory.

is minimized. This minimization is based on the similarity of the Euclidean field theory with
statistical mechanics, and W(µ) corresponds to the entropy of quantum fluctuations in the measure
µ . It is easy to see that the unique solution to the minimization problem (2.2) is simply the original
Euclidean path integral measure, i.e. R = S. This is illustrated in the left panel of 1: the otpimal
choice for the parameters {γ} in the trial ansatz R[A] is such that R[A] = S[A]. So it seems that the
principle (2.2) is trivial, as its solution merely leads us back to where we started.

In reality, however, our limited computational power means the the set of measures {R[A]}
which we can handle is restricted and does not include the original target action S[A] (or we could
have solved the theory directly). This is depicted in the right panel of 1: now the parameters {γ}
in the trial ansatz R[A] are non-trivial and lead to an optimal action R̄[A] within our computational
reach, which is as close as possible to the target action. The more truncated our ansatz space, the
less trivial will be the gap equations determining the variational parameters {γ}, since they have to
make up for the severely restricted ansatz space.

Usually, the minimization of the free action is carried out in a restricted form, where the
expactation value of the field is fixed to some prescribed value A ,

F(µ,A ) =
{

F(µ) | 〈A〉µ = A
}
. (2.3)

Once this is minimized with respect to µ , the minimizing measure µA will implicitly depend on
the prescribed field and the value of the minimal free action thus also becomes a functional of the
external field, Γ[A ] = F(µA ,A ) . Without restriction on the variational ansatz, this quantity is
simply the quantum effective action, i.e. the generating functional of the proper functions of the
original theory S[A].

For Yang-Mills theory in the continuum, we must fix the gauge and the resulting Faddeev-
Popov (FP) action is not of the standard form (2.1). The FP determinant J[A] can, however, easily
be incorporated in the entropy W(µ), so that the following modified free action is appropriate:

F(µR,A ) =
{
〈Sgf〉µR−

[
〈R〉µR + 〈lnJ〉µR− lnNR

]
| 〈A〉µR = A

}
. (2.4)

3. Zero temperature: the Gaussian ansatz

In the following, we employ Landau gauge ∂µAµ = 0 and restrict our trial measure to the
simplest choice, namely the set of modified Gaussian measures with arbitrary kernel ω ,

dµ[A] = N(ω) ·dAJ[A]−1 exp
[
−1

2

∫
d(x,y)Aa

µ(x)ωµν(x,y)δ
ab Ab

ν(y)
]

(3.1)
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Figure 2: Gluon propagator (left) and ghost form factor (right) at T = 0 from the decoupling solution of the
variational approach, compared to high-precision lattice data taken from Ref. [10].

The physical concept behind this choice is the notion of a weakly coupled constituent gluon with
an enhanced weight near the Gribov horizon (where J(A) = 0). After Fourier transformation, the
variational kernel ωµν(k) = (δµν−kµkν/k2)ω(k) becomes the inverse gluon propagator. Inserting
eq. (3.1) into eq. (2.4) and minimizing w.r.t. ω(k) yields a closed system of integral equations
which can be written in diagramatical form as

(3.2)

The ghost propgator in the second line emerges from the ghost representation of the FP determi-
nant. In principle, we would also have to list the ghost-gluon vertex as a variational kernel. It
is, however, well known to receive very little dressing even in the confined phase, and we simply
assume the bare solution for its gap equation (rainbow-ladder approximation). The system (3.2)
can be conventionally renormalized by adding three counter terms

LCT = δZA ·
1
4
(∂µAa

ν −∂νAa
µ)

2 +δM2 · 1
2
(Aa

µ)
2 +δZc ·∂µ c̄∂

µc . (3.3)

The coefficients are determined by three renormalization conditions which are imposed at three
different scales for numerical stability. In particular, the mass counter term is fixed by a condition
ω(µ0)= ZM2

A which looks similar to a gluon mass term. However, since µ0 > 0 it merely represents
a dimensionfull mass parameter which sets the overall scale. Indeed, the system (3.2) admits
scaling solutions which describe a massless gluon while still having MA 6= 0. As can be seen
from Fig. 2, the decoupling solution with a finite ghost form factor at µ = 0 describes the lattice
data much better and offers an almost perfect quantitative agreement. It should be noted that the
renormalization determines all free parameters uniquely at T = 0. All subsequent calculations at
T > 0 re-use these settings and therefore lack any adjustable parameters.
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4. Finite temperature and the Polyakov Loop

Since our trial measure induces a conventional Euclidean quantum field theory, finite temper-
ature can be introduced as usual by compactifying the Euclidean time direction to a circle of length
β = T−1, and imposing periodic boundary conditions for the gluons and the ghosts (even though
the latter are fermions). One immediate consequence of this prescription is that the loop integration
over the temporal component k0 decays to a sum over Matsubara frequencies. Moreover, the heat
bath breaks Lorentz covariance, and the temporal direction is also singled out in the Lorentz struc-
ture of the gluon propagator, which now acquires two separate variational kernels ω‖(k) and ω⊥(k)
parallel and perpendicular to the heat bath, respectively. Despite these changes, the modifications
to the propagators at finite temperature are rather modest: with increasing temperature, there is a
slight enhancement of the ghost form factor and a mild suppression of the gluon propagator, with
a somewhat larger temperature sensitivity in the direction longitudinal to the heat bath [7]. This is
all in qualitative agreement with lattice simulations. In particular, there is no abrupt change in the
qualitative behaviour of the propagators, and no sign of a phase transition.

In order to study confinement, we must hence look at a different observable. The order param-
eter for confinement in Yang-Mills theory is the Polyakov-loop winding around the compactified
Euclidean time direction:

L(x)≡ Pexp
[
−
∫

β

0
dt A0(t,x)

]
. (4.1)

It is related to the free energy Fq of a static quark, 〈trL(x)〉 = exp [−βFq(x)], so that 〈trL(x)〉 = 0
implies Fq = ∞ and hence static quark confinement, while 〈trL(x)〉 6= 0 means Fq < ∞ and hence
deconfinement. Some gauges admit a slightly different order parameter 〈tr lnL〉, which for G =

SU(2) reduces to the normalized quantity

x≡
β 〈A3

0〉
2π

=
βa

2π
∈ [0,1] , (4.2)

parametrizing the Weyl chamber, while for G = SU(3), we have two such variables x and y for
the two Cartan directions T 3 and T 8. Two gauges for which eq. (4.2) has been shown rigorously
[12] to be an order parameter for confinement are the Polyakov gauge, ∂0A0 = A1,2

0 = 0, and the
background gauge

Aµ = aδµ0 +Qµ ,
[
Dµ(a),Qµ

]
= 0 . (4.3)

In order to derive the effective action for the Polyakov loop, we would now have to go to back-
ground gauge and modify our Gaussian ansatz such that 〈A3

µ〉= δµ0a. Fortunately, we do not need
to go through the entire calculation again. Using special properties of the Gaussian ansatz, one can
show [8] that the variational kernel ω(k) from the Landau gauge calculation can be transferred to
background gauge by simple replacements and shifts. Thus applying the rules to the T = 0 solution
from eq. (3.2) (since the finite-T corrections to the kernel are subdominant) and inserting in the free
action (2.4), the spacetime volume eventually factorizes and we can compute the effective action
density, or effective potential, Veff(a) of the constant background field a. To remove irrelevant
field-independent divergences, we also subtract the contribution from a= 0; for further details, see
Ref. [8].
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Figure 3: Expectation value of the Polyakov loop as a function of temperature for the colour groups SU(2)
(left) and SU(3) (right).

From the background field amin which minimizes the effective potential Veff(a)−Veff(0), we
can infer the Polyakov loop

〈trL〉= 〈tr exp(lnL)〉 ≈ exp
[
〈tr lnL〉

]
= exp

[
−βa

]
. (4.4)

This is plotted in Fig. 3 for the colour groups SU(2) and SU(3). As can be clearly seen, there is
a phase transition from a confined phase with 〈L〉 = 0 for T < T ∗ to a deconfined phase in which
〈L〉 6= 0 quickly approaches unity. In the left panel for G = SU(2), the transition is 2nd order,
while it is clearly discontinuous (1st order) for the case G = SU(3) in the right panel. The critical
temperatures are predicted as

SU(2) : T ∗ = 216MeV lattice : T ∗ = 306MeV (4.5)

SU(3) T ∗ = 245MeV lattice : T ∗ = 284MeV , (4.6)

where we have also listed the corresponding lattice results from Ref. [13]. The temperatures are
in good agreement to the lattice data, in particular if one considers that the overall mass scale has
been fixed entirely in the T = 0 renormalization, and all results here are parameter-free predictions.

5. Thermodynamics

In Ref. [9], we have studied the equation of state of the Yang-Mills plasma at finite temperature
within the covariant variational approach. The central quantity is the free action eq. (2.4), or rather
its minimum under variation of our (Gaussian) ansatz,

F(β ) = minµ Fβ (µ) = minaΓβ [a] =− lnZ(β ) =V3 β · f (β ) . (5.1)

Since the confined phase has an instability against the formation of a non-trivial background field
a 6= 0 (see above), we must include in our variation Gaussian measures with and without back-
ground field 〈A0〉 = aδµ0. The minimum of the corresponding effective potential thus gives the
effective action from which the spacetime volume V4 =V3β factorizes because of translational in-
variance. The remainder f (β ) is hence the free action per unit spacetime volume, or the free energy
density. From this quantity, we can derive other interesting thermodynamical observables such as
the pressure p(β ) =− f (β ) or the energy density ε(β ) = f (β )+β ∂ f/∂β .
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Figure 4: Pressure (left) and energy density (right) for G = SU(2) Yang-Mills theory from the variational
approach, compared to lattice date taken from [11].

As explained above, the free energy density is simply obtained from the minimum of the
effective potential. In contrast to the calculation of the Polyakov loop, where we subtracted the
a = 0 contribution, we must now include all degrees of freedom. This means that the free energy
density and the pressure will diverge. The origin of this divergence is, however, well understood: It
is simply the temperature-independent vacuum energy present in any quantum field theory, which
must be removed by a cosmological constant counter term. In Ref. [9], we have shown that this can
be done most succinctly by Poisson resummation of the Matsubara series in the free action. The
result is an expression for the free energy density in a background (4.2) of the form (G = SU(2))

β
4 fβ (x) =−

2
π2

∞

∑
ν=1

cos(2πνx)+ 1
2

ν4 h(βν) . (5.2)

The subtraction of the vacuum energy corresponds simply to the omission of the divergent contri-
bution ν = 0 in the Poisson sum. The function h(λ ) is related to the dispersion relation of all active
degrees of freedom, cf. Ref. [9] for details.

In Fig. 4, we present the pressure and energy density computed from eq. (5.2) using our vari-
ational solution ω(k). As can be seen, the correct Stefan-Boltzmann limit is approached at T → ∞

in both functions. In the entire deconfined region, the variational approach gives a good description
of the lattice data from Ref. [11], although the pressure and energy density are slightly underes-
timated. There is a clear phase transition at which the pressure drops to zero, p(T ∗) = 0. In the
confined phase, the only excitations are glueballs whose contributions to the partition function are
exponentially suppressed, since the lightest glueball has a mass of arond 1.5GeV. One would
therefore expect nearly zero pressure and energy density throughout the entire confinement region,
and the lattice data corroborates this reasoning. By contrast, the variational approach has all kind
of defects in the confined region: The pressure increases with decreasing temperature to a shallow
maximum and then settles for a non-vanishing limit indicating that the ansatz still exhibits massless
particles (ghosts) in this region. Even more problematic is the energy density, which jumps at T ∗

and even becomes negative for a substantial portion of the confined phase.
Similar defects have been seen in practically all functional approaches, cf. [14]. The physical

reason behind it is that the effective degrees of freedom in these approaches are always (constituent)
gluons and ghosts. To describe the proper physics in the confined region, functional approaches
would have to be rich enough to describe the formation of colourless glueballs out of these con-
stituents. (It is clear that a Gaussian ansatz is not able to do this.) Instead, confinement comes

6
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about through ghost dominance, i.e. through an abundance of enhanced ghost degrees of freedom
in the deep infrared. While this is sufficient to restore center symmetry for the Polyakov loop, it
necessarily leads to the wrong thermodynamics. A more complete description would have to devise
a method to form glueballs dynamically within a variational ansatz, or to include them as effective
degrees of freedom from the outset.

6. Non-Gaussian measures

So far, all our investigations have been performed with the simple Gaussian ansatz eq. (3.1).
To conclude this talk, I will briefly present a method to extend the variational approach beyond this
limitation by using Dyson-Schwinger equations (DSEs). It should be noted that, for any reasonable
theory, the tower of DSEs must be truncated. This means that we are always in a situation as in
the right panel of Fig. 1, where the theories covered by truncated DSEs with variational vertices
will not include the original theory (or there would be no need for the truncation). The variational
approach can then be used to optimize the vertices of the DSE to give the best description for a
given truncated set of DSEs.

As a simple example for this technique, let us look at the ghost dominance model for Yang-
Mills theory, which is defined by a trial Ansatz action

R =
1
2

ω(3,4)A(3)A(4)+ c̄(c)
[
−∆(3,4)+Γ0(3,4, ;5)A(5)

]
c(4) . (6.1)

Here, we have used a convenient shortcut notation where the same digits in an expression indicate
a sum over all discrete indices and an integration over all spacetime arguments. The ghost-gluon
coupling in the last term is cubic in the fields so that R is non-Gaussian. (We have taken the vertex
to be bare in accordance with the rainbow-ladder approximation discussed earlier.) The Dyson-
Schwinger equations derived from the action R now also involve a seprate equation for the triple
gluon vertex, which was missing entirely in the Gaussian ansatz:

(6.2)

(6.3)

Here, fat vertices and lines are fully dressed, and the open square represent the variational kernel
ω (which is no longer the inverse gluon propagator). From the gap equation written in the form

〈
δR
δω

(S−R)
〉

R
=

〈
δR
δω

〉
R

〈
S−R

〉
R
. (6.4)

7



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
0
5
9

Covariant Variational Approach to Yang-Mills Theory Markus Quandt

we can derive a diagramatical representation which looks quite formidable

(6.5)

The last two lines are two-loop contributions that are neglected in the usual truncation schemes.

7. Summary and Conclusion

In this talk I have presented the foundations of the covariant variational approach to Yang-
Mills theory and its extension to finite temperature. While most thermal properties are reproduced
accurately (including the deconfinement phase transition), the thermodynamics in the confined
phase point to shortcomings of the Gaussian approach which cannot describe the correct glueball
degrees of freedom. Finally, I have briefly discussed how the covariant variational approach can be
combined with Dyson-Schwinger techniques to go beyond the Gaussian ansatz, and illustrated it
with a simple ansatz for Yang-Mills theory. In the future, we plan to apply the same techniques to
full QCD including fermions, which would allow to study the QCD phase diagram in the regions
where lattice calculations currently fail.
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