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The dual superconductivity is a promising mechanism of quark confinement. In the preceding works,
we have given a non-Abelian dual superconductivity picture for quark confinement, and demonstrated
the numerical evidences on the lattice.
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1. Introduction

The dual superconductivity is a promising mechanism for quark confinement [1]. To establish the
dual superconductivity picture, we must show that magnetic monopoles play a dominant role in quark
confinement. For this purpose, we have constructed a new framework for the SU(N) Yang-Mills theory
on the lattice, called the decomposition method, which gives the decomposition of a gauge link variable
Ux,µ = Xx,µVx,µ to extract a variable Vx,µ called the restricted field as the dominant mode for quark
confinement in the gauge independent way. (See [2] for a review.) This formulation can overcome
criticism raised for the Abelian projection method [3] for extracting Abelian magnetic monopoles, i.e.,
the magnetic monopole is obtained only in special Abelian gauges such as the maximal Abelian (MA)
gauge [4]. The Abelian projection is nothing but a gauge fixing to break the gauge symmetry, which
breaks also the color symmetry (global symmetry).

In the new framework, the SU(3) Yang-Mills theory has two options for choosing the fundamental
field variables: the minimal and maximal options. These two options are discriminated by the maximal
stability subgroup H̃ of the gauge group SU(3). In the minimal option, the maximal stability group is a
non-Abelian group H̃ =U(2) and the restricted field is used to extract non-Abelian magnetic monopoles.
The minimal option is suggested from the non-Abelian Stokes theorem for the Wilson loop operator in the
fundamental representation. In the preceding works, we have provided numerical evidences of the non-
Abelian dual superconductivity using the minimal option for the SU(3) Yang-Mills theory on a lattice.
In the maximal option, the maximal stability group is an Abelian group H̃ =U(1)×U(1), the maximal
torus subgroup of SU(3). This decomposition was first constructed by Cho and Faddeev and Niemi [5]
by extending the Cho-Duan-Ge-Faddeev-Niemi (CDGFN) decomposition for the SU(2) case [6], and
is nothing but the gauge invariant extension of the Abelian projection in the maximal Abelian gauge.
Therefore, the restricted field in the maximal option involves only the Abelian magnetic monopole.

In this talk, we investigate the confinement/deconfinement phase transition at finite temperature from
a viewpoint of the dual superconductivity in the both minimal and maximal options. The preliminary
results are given by preceding works [9][10]. For this purpose, we examine several quantities constructed
by the restricted fields in both options as well as the original Yang-Mills field at finite temperature, e.g.,
the distribution and average of the Polyakov loops, the static potential from the Wilson loop, the dual
Meissner effects, and so on. The the dual Meissner effects at finite temperature can be examined by
measuring the distribution of the chromo-electric field strength (or chromo flux) generated from a pair
of the static quark and antiquark and the associated magnetic-monopole current induced around it. In
particular, we discuss the role of the non-Abelian magnetic monopole in confinement/deconfinement
phase transition.

2. Gauge link decompositions

In this section, we give a brief review of the decomposition method, which enables one to extract the
dominant mode for quark confinement in the SU(N) Yang-Mills theory (see [2] in detail). We decompose
the gauge link variable Ux,µ into the product of the two variables, Vx,µ and Xx,µ , in such a way that the
new variable Vx,µ is transformed by the full SU(N) gauge transformation Ωx as the gauge link variable
Ux,µ , while Xx,µ transforms as the site variable:

Ux,µ = Xx,µVx,µ ∈ G = SU(N), (2.1a)

Ux,µ −→U ′x,ν = ΩxUx,µΩ
†
x+µ ,Vx,µ −→V ′x,ν = ΩxVx,µΩ

†
x+µ , Xx,µ −→ X ′x,ν = ΩxXx,µΩ

†
x . (2.1b)
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From the physical point of view, Vx,µ could be the dominant mode for quark confinement, while Xx,µ is
the remainder part. For the SU(3) Yang-Mills theory, we have two possible options discriminated by the
stability subgroup of the gauge group, which we call the minimal and maximal options.

2.1 Minimal option

The minimal option is obtained for the stability subgroup H̃ =U(2)= SU(2)×U(1). By introducing
a single color field, hhhx = ξx

λ 8

2 ξ †
x ∈ Lie[SU(3)/U(2)], with λ 8 being the last diagonal Gell-Mann matrix

and ξx an SU(3) group element, the decomposition is obtained by solving the defining equations:

Dε
µ [V ]hhhx :=

1
ε

[
Vx,µhhhx+µ −hhhxVx,µ

]
= 0 . (2.2)

The defining equation can be solved exactly, and the solution is given by

Xx,µ = L̂†
x,µ det(L̂x,µ)

1/3g−1
x , Vx,µ = X†

x,µUx,µ = gxL̂x,µUx,µ , (2.3a)

L̂x,µ :=
(
Lx,µL†

x,µ
)−1/2

Lx,µ , Lx,µ :=
5
3

1+
2√
3
(hhhx +Ux,µhhhx+µU†

x,µ)+8hhhxUx,µhhhx+µU†
x,µ . (2.3b)

Here, the variable gx := ei2πq/3 exp(−ia0
xhhhx − i∑

3
j=1 a( j)

x u( j)
x ) is the U(2) part which is undetermined

from eq(2.2) alone, u( j)
x ’s are su(2)-Lie algebra valued, and q is an integer. Note that the above defining

equation with gx = 1 corresponds to the continuum version: Dµ [VVV ]hhh(x) = 0 and tr(XXX µ(x)hhh(x)) = 0. In
the continuum limit, indeed, the decomposition in the continuum theory is reproduced.

The decomposition is uniquely obtained as the solution of the defining equation, once a set of color
fields {hhhx} are given. To determine the configuration of color fields, we use the reduction condition of
minimizing the functional:

Fred[nnn
(8)
x ] = ∑

x,µ
tr
{
(Dε

µ [Ux,µ ]hhhx)
†(Dε

µ [Ux,µ ]hhhx)
}
. (2.4)

2.2 Maximal option

The maximal option is obtained for the stability subgroup of the maximal torus subgroup of G:
H̃ = U(1)×U(1). By introducing the color field, nnn(3)x = ξx

λ 3

2 ξ †
x ∈ Lie[SU(3)/U(1)×U(1)], nnn(8)x =

ξx
λ 8

2 ξ †
x ∈ Lie[SU(3)/U(2)], with λ 3, λ 8 being the two diagonal Gell-Mann matrices and ξ an SU(3)

group element, the decomposition is obtained by solving the defining equations:

Dε
µ [V ]nnn( j)

x :=
1
ε

[
Vx,µnnn( j)

x+µ −nnn( j)
x Vx,µ

]
= 0 ( j = 3,8) . (2.5)

The defining equation can be solved exactly, and the solution is given by

Xx,µ = K̂†
x,µ det(K̂x,µ)

1/3g−1
x , Vx,µ = X†

x,µUx,µ , (2.6a)

K̂x,µ :=
(
Kx,µK†

x,µ
)−1/2

Kx,µ , Kx,µ := 1+6(nnn(3)x Ux,µnnn(3)x+µU†
x,µ)+6(nnn(8)x Ux,µnnn(8)x+µU†

x,µ). (2.6b)

Here, the variable gx := ei2πq/3 exp(−ia3
xnnn(3)x − ia(8)x nnn(8)x ) with integer q is the U(1)×U(1) part which

is undetermined from eq(2.5) alone. Note that the above defining equation with gx = 1 corresponds to
the continuum version: Dµ [VVV ]nnn( j)(x) = 0 and tr(XXX µ(x)nnn( j)(x)) = 0. In the continuum limit, we can
reproduce the decomposition in the continuum theory.
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The decomposition is uniquely obtained as the solution (2.7) of the defining equations, once a set of
color fields

{
nnn(3)x ,nnn(8)x

}
are given. To determine the configuration

{
nnn(3)x ,nnn(8)x

}
of color fields, we use the

reduction condition of minimizing the functional:

Fred[nnn
(3)
x ,nnn(8)x ] = ∑

x,µ
∑

j=3,8
tr
{
(Dε

µ [Ux,µ ]nnn
( j)
x )†(Dε

µ [Ux,µ ]nnn
( j)
x )
}
. (2.7)

Note that, the resulting decomposition is the gauge-invariant extension of the Abelian projection in the
maximal Abelian (MA) gauge.

3. Numerical simulations on the lattice

We set up the numerical simulations at finite temperature adopting the standard Wilson action with
the inverse gauge coupling constant β = 2Nc/g2 (Nc = 3) and using the pseudo heat-bath algorithm and
the over-relaxation algorithm to generate the gauge field configurations (link variables) {Ux,µ} on the
lattice of size N3

s ×NT . We prepare 1000 gauge configurations every 100 seeps with 8 over relaxations
after 8000 thermalization sweeps with cold start for the fixed spatial size Ns and the temporal size NT :
Ns = 24, NT = 6, where the temperature varies by changing the coupling β (5.75≤ β ≤ 6.50).

We obtain the color field configurations for the minimal and maximal options by solving the re-
duction conditions, and then we perform the decomposition of the gauge link variable Ux,µ = Xx,µVx,µ

by using the formula given in the previous section, i.e., for the minimal option eq(2.3) with the color
field {hhhx} by minimizing eq(2.4), for the maximal option eq(2.6) and the color field

{
nnn(3)x ,nnn(8)x

}
by min-

imizing eq(2.7). In the measurement of the Polyakov loop average and the Wilson loop average defined
below, we apply the APE smearing technique [7] to reduce noises .

3.1 Polyakov-loop average at the confinement/deconfinement transition

First, we investigate the distribution of single Polyakov loops. For a set of the original gauge field
configurations {Ux,µ} and the restricted gauge field configurations {Vx,µ} in the minimal and maximal
options, we define the respective Polyakov loops by

PYM
U (x) :=

1
3

tr

(
P

NT

∏
t=1

U(x,t),4

)
, Pmin

V (x) :=
1
3

tr

(
P

NT

∏
t=1

V (min)
(x,t),4

)
, Pmax

V (x) :=
1
3

tr

(
P

NT

∏
t=1

V (max)
(x,t),4

)
, (3.1)

and the space-averaged Polyakov loops by

PY M :=
1
L3 ∑

x
PYM

U (x), Pmin :=
1
L3 ∑

x
Pmin

V (x), Pmax :=
1
L3 ∑

x
Pmax

V (x), (3.2)

where the value of the Polyakov loop is averaged over the space volume for each configuration.
Figure 1 shows the plots of and {PYM

U (x)}, {Pmin
V (x)} and {Pmax

V (x)} on the complex plane measured
from a set of the original Yang-Mills field configurations and a set of the restricted field configurations
in the minimal and maximal options, respectively. We find that the value of the space-averaged Polyakov
loops are different option by option, but all the distributions on the complex plane equally reflect the
expected center symmetry Z(3) of the SU(3) gauge group.

The left panel of Figure 2 shows the comparison of three Polyakov-loop averages, i.e., 〈PY M〉, 〈Pmin〉,
and 〈Pmax〉, for various temperature (β ), where the symbol 〈O〉 denotes the average of the operator O

over the ensemble of the configurations. The right panel of Fig. 2 shows their susceptibilities, χ :=〈
P2
∗
〉
−〈P∗〉2, with P∗ being one of PY M, Pmin, and Pmax. These panels clearly show that both the minimal

and maximal options reproduce the critical point of the original Yang-Mills field theory. Thus, these
three Polyakov-loop averages give the identical critical temperature, i.e., β = 5.9.
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Figure 1: The distribution of the space-averaged Polyakov loop on the complex plane: (Left) Yang-Mills field
(Middlel) restricted field in minimal option (Right) restricted field in maximal option.
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Figure 3: The set up for the measurement of the static quark-antiquark potential at finite temperature. (Left) the
Wilson loop (Middle) The gauge-invariant operator tr(WLUpL) between a plaquette Up and the Wilson loop W .
(Right) Measurement of the chromo-flux at finite temperature.

3.2 Static quark–antiquark potential at finite temperature

Next, we investigate the static quark–antiquark potential at finite temperature. To obtain the static
potential at finite temperature, we adopt the Wilson loop operator, (see the left panels of Fig.3), which is
defined for the rectangular loop C with the spatial length R and the temporal length τ which is maximally
extended in the temporal direction, i.e., τ = 1/T . According to the standard argument, for large τ i.e.,
small T , the static potential is obtained from the original gauge field U and the restricted gauge field V :

V (R;U) :=−1
τ

log〈WU〉=−T log〈WU〉 , V (R;V ) :=−1
τ

log〈WV 〉=−T log〈WV 〉 . (3.3)
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Figure 4: The static quark potential obtained using the maximally extended Wilson loop from the data set (II) at
various temperatures NT = 6 and 5.75≤ β ≤ 6.5 (Left) original gauge field, (Middle) restricted field in the minimal
option, (Right) restricted field in the maximal option. (applying APE smearing 8 times with weight 0.2)

Figure 4 shows the static potentials at various temperatures (β ) calculated according to the definition
(3.3). By comparing these results, we find that the potential is reproduced by the restricted field alone in
both options. Therefore, we have shown the restricted V -field dominance for both options in the static
potential at finite temperature.

3.3 Chromo-flux tube at finite temperature

We proceed to investigate the non-Abelian dual Meissner effect at finite temperature. For this pur-
pose, we measure the chromo-flux created by a quark-antiquark pair, which is represented by the maxi-
mally extended Wilson loop W as given in the middle and right panel of Fig.3. The chromo-field strength,
i.e., the field strength of the chromo-flux created by the Wilson loop W as the source, is measured by
using a plaquette variable Up as the probe operator for the field strength. We use the gauge-invariant
correlation function which is the same as that used at zero temperature [8]:

Fqq̄
µν =

√
β

6
ρUP

, ρUP
:=

〈
tr
(
WLUpL†

)〉
〈tr(W )〉

− 1
Nc

〈tr(Up) tr(W )〉
〈tr(W )〉

, (3.4)

where L is the Wilson line connecting the source W and the probe Up to guarantee the gauge-invariance.

Indeed, in the naive continuum limit, the connected correlator ρUP
reduces to ρUP

ε→0' gε2
〈
Fµν

〉
qq̄ :=

〈tr(gε2Fµν L†WL)〉
〈tr(W )〉 +O(ε4).

Figure 5 shows the chromo flux measured by using eq(3.4). At a low-temperature in the confinement
phase, T < Tc, we observe that only the component Ez of the chromoelectric flux tube in the direction
connecting a quark and antiquark pair is non-vanishing, while the other components take vanishing val-
ues. (See the upper panels of Fig. 5. ) At a high-temperature in the deconfinement phase, T > Tc, we
observe the non-vanishing component Ey orthogonal to the chromoelectric flux, which means no more
squeezing of the chromoelectric flux tube. (See the lower panels of Fig. 5 .) This is a numerical evidence
for the disappearance of the dual Meissner effect in the high-temperature deconfinement phase.

3.4 Magnetic–monopole current and dual Meissner effect at finite temperature

Finally, we investigate the dual Meissner effect by measuring the magnetic–monopole current k in-
duced around the chromo-flux tube created by the quark-antiquark pair. We use the magnetic–monopole
current k defined by

kµ(x) =
1
2

εµναβ

(
Fqq̄

αβ
[V ](x+ ν̂)−Fqq̄

αβ
[V ](x)

)
, (3.5)
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Figure 5: Measurement of chromo flux: Ex = Fqq̄
14 , Ey = Fqq̄

24 , EZ = Fqq̄
34 , Bx = Fqq̄

23 , By = Fqq̄
31 , Bz = Fqq̄

12 . The upper
panels show the plots of chromo fluxes at a low temperature in the confiment phase (T < Tc), and the lower panels
show those at a high temperature in the deconfinement phase .(Tc < T ). The left-column panels show the chromo
flux for Yang-Mills field, and the middle- and right-column panels show the cheomo flux for the restricted field in
the minimal and mxaimal options, respectively .
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Figure 6: The magnitude
√

kµ kµ of the induced magnetic current kµ around the flux tube connecting the quark-
antiquark pair as a function of the distance y from the z axis for various values of β i.e., temperature. (Left)
Yang-Mills filed (Middle) minimal option, (Right) maximal option.

where F [V ] is the field strength of the restricted field V . This definition satisfies the conserved current,
i.e., ∂µkµ(x) :=∑µ

(
kµ(x+ µ̂)− kµ(x)

)
≡ 0. Note that the magnetic–monopole current (3.5) must vanish

due to the Bianchi identity as far as there exists no singularity in the gauge potential, since the field
strength is written by using differential forms as F [V ] = dV, and then the magnetic–monopole current
vanishes, i.e., k := ∗dF = ∗ddV = 0. We show that the magnetic–monopole current defined in this way
can be the order parameter for the confinement/deconfinement phase transition, as suggested from the
dual superconductivity hypothesis. Fig. 6 shows the result of the measurements of the magnitude

√
kµkµ

of the induced magnetic current kµ obtained according to (3.5) for various temperatures (β ). The current
decreases as the temperature becomes higher and eventually vanishes above the critical temperature for
both options. We observe the appearance and disappearance of the magnetic monopole current in the low
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temperature phase and high temperature phase, respectively.

4. Summary and outlook

By using a new formulation of Yang-Mills theory, we have investigated two possible options of the
dual superconductivity at finite temperature in the SU(3) Yang-Mills theory, i.e., the Non-Abelian dual
superconductivity in the minimal and the maximal options which are to be compared with the conven-
tional Abelian dual superconductivity. In the measurement for both maximal and minimal options as
well as for the original Yang-Mills field at finite temperature, we found the restricted V -field dominance
in the string tensions for both options. Then, we have investigated the dual Meissner effect and found
that the chromoelectric flux tube appears in both options in the confining phase, but it disappears in the
deconfinement phase. Thus both options can be adopted as the low-energy effective description of the
original Yang-Mills theory. The detailed analysis will be appear in the subsequent paper [11].
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