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1. Introduction

Experiments of high energy collisions have accumulated lots of data, allowing for a deep
investigation of the quark-gluon plasma (QGP) properties. Information on quarks and gluons prop-
agation in the medium can be investigated with high accuracy, and the properties of the bulk matter
can give information on confinement and on the Equation of States of the quark-gluon plasma and
of hadronic matter, opening the opportunity to use that information in other related fields, as in the
composition and stability of stars, or in the study of the primordial universe.

Hagedorn[1, 2] with the self-consistent thermodynamics predicted, aside the well known lim-
iting temperature, or Hagedorn temperature, the exponential behavior of energy and momentum
distributions, as well as the exponential increase of the hadron mass spectrum. The success of
his theory triggered the development of hadron resonance gas models[3] and was the basis for the
proposal of the quark-gluon plasma[4]. However, as the energy of the experiments increased and
a large region of momentum distributions was measured, it was found that Hagedorn’s theory was
not able to describe completely the experimental results. With the increasing importance of QCD,
Hagedorn’s theory became obsolete, but more recently it was shown that the power law behavior
could be explained by using Tsallis distribution [5]. With the present work we intend to show that
it is possible to reconcile the thermodynamical self-consistency idea proposed by Hagedorn with
gauge field theory in general and particularly with QCD. We will show that renormalized fields can
arrange themselves in a fractal structure which can be described by non extensive statistics, and
discuss that an extended version of Hagedorn’s theory can contribute to our understanding of the
high energy collisions experiments and of QCD. The generalization of Hagedorn theory by adopt-
ing Tsallis statistics was performed in Ref. [6] and the demonstration that a fractal structure can
explain the emergence of Tsallis statictics was done in Ref. [7].

2. Fractal structure and non extensive statistics

The emergence of Tsallis statistics in strong interacting systems has been shown to be related
to a fractal structure of thermodynamical functions [7], which were called thermofractals. These
systems feature the following properties: the have internal structure with N′ components, each
of them being thermofractals; the kinetic energy K and the internal energy, E, of the constituent
particles are such that the ratio E/K vary according to a distribution P̃(E/K). It is possible to show
that, starting from the classical Boltzmann statistics, one finally finds that the best way to describe
the thermodynamical properties of thermofractals is by using Tsallis statistics [5].

The probability for the total energy of a thermofractal to be between U and U+dU is, therefore,
given by [7]

P(U)dU = λ
−D

∑
{N′}

∏
i

AkT
[
P̃(mi)

]ν e−βUidµid3
π (2.1)

where A is a normalization constant, λ = T/To, with To being some reference temperature, and
π = p/kT and µ = m/kT are normalized momentum and mass. The new variable, ε , is defined
by εi/kT = Ei/K, with Ui = mi +Ki, Ei being the particle total energy and Ki its kinetic energy.
We observe that the effective energy, ε , allows to scale the internal parton energy with the global
scaling instead of the kinetic energy. With the introduction of these variables A is dimensionless.
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The equation above establishes a relation between the energy distribution of the initial system, and
the internal energy distribution of its components.

A crucial point is to notice that, being both thermofractals, the probability distributions P(U)

for the initial system and the probability distribution P̃(mi) must be the same. Therefore one has
to find a function P(ε) that, substituted in Eq. (2.1) in the places where P(U) and P̃(mi) appear,
provides a solution to that equality. Such function was found in Ref. [7], and can be written in the
form

P̃(ε) = A
[
1+(q−1)

(
ε

kτ

)]− 1
q−1

, (2.2)

where

q−1 =
2

3N
(1−ν) (2.3)

and

τ = (q−1)NT . (2.4)

The right hand side of Eq.( 2.2) can be recognized as the Tsallis distribution, which arises from
application of the non extensive statistics proposed by tsallis [5]. The parameter q is known as
entropic index, and τ is an effective temperature.

The connection between Tsallis and Boltzmann statistics provided by the introduction of ther-
mofractal structure allows a deeper understanding on how the non extensive statistics generalizes
the extensive statistics, and affords the determination of the entropic index in terms of the parame-
ters of the fractal structure, as given by Eq. (2.3). In addition, it is shown that the temperature, T ,
in Boltzmann statistics, differs from the temperature, τ , in Tsallis statistics, determining a relation
between the two parameters, as shown in Eq. (2.4).

Observe that N and ν are parameters of the fractal structure, with N being the number of
components in the internal structure of the thermofractal. As N increases, the energy of each
component decreases, in order to conserve the total energy. As N→ ∞, the internal energy of each
component becomes negligible, therefore also the effects of its internal structure. In this case the
system behaves as an extensive ideal gas, and in fact we observe in Eq. (2.3) that in such limit we
have q→ 1, exactly the limit when Boltzmann statistics is recovered from Tsallis statistics [5].

The parameter ν regulates the relative importance of the internal structure to the total energy
fluctuation. Indeed, if ν = 1, small probabilities are less important, and the energy fluctuation
is dominated by the most probable configurations of the thermofractal. Small variations of the
internal energy are unimportant, and the system behaves as an ideal gas. Again, from Eq. (2.3), we
see that in such case q = 1 and Boltzmann statistics is restored. As ν decreases, small probabilities
becomes more relevant and fluctuations of internal energy of the components are more important.
In the case ν → 0, the effects of several levels of internal structure are relevant to describe the
energy fluctuation of the system. For ν = 1 a self-similar solution is not possible [7]. We see that
Boltzmann statistics is recovered when N→ ∞.

A detailed analysis of the thermofractal structure was performed in Ref. [8], where it was
shown that the system presents a fractal structure in the energy-momentum space. The scaling
properties of thermofractals were further investigated in terms of renormalization group equation
in Ref. [9, 10].
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Scaling properties are present in many systems and processes [11], and are in many cases
related to complex structures, fractal dimensions and self-organization. Since QCD is a special
case of Yang-Mills field theory, which is renormalizable, it is interesting to investigate if fractal
structures is allowed in this field theory.

3. Yang-Mills fields and fractal structure

The simplest scale free gauge field theory has Lagrangian density including bosons and fermions
given by

L =−1
4

Fa
µνFaµν + iψ̄γµDµ

i jψ j (3.1)

where Fα
µν = ∂µAa

ν −∂νAa
µ +g f abcAb

µAc
ν and Dµ

i j = ∂µδi j− igAαµT a
i j , with ψ and A being, respec-

tively, the fermion and the vector fields, and f abc being the structure constants of the group and T a

the matrices of the group generators in the fermion representation
One important aspect of Yang-Mills field theory is that it is renormalizable, that is, when

regularization is used to avoid infinities, the original vertex functions are related to new vertex
functions with renormalized parameters, m and ḡ, as

Γ(p,m,g) = λ
−D

Γ(p, m̄, ḡ) . (3.2)

This property is mathematically described by the renormalization group equation [12, 13, 14, 15].
Such equation is known as Callan-Symanzik equation [16, 17, 18], and is given by[

M
∂

∂M
+βg

∂

∂ ḡ
+ γ

]
Γ = 0 (3.3)

where M is the scale parameter, and the β -functions are defined as

βg = M
∂ ḡ
∂M

. (3.4)

D=Do+d, with Do being the natural dimension of the phase-space. In general, d is not necessarily
an integer, therefore the scaling dimension, D, may be fractionary. The parameter γ in the equation
indicates the anomalous dimension of the fields under scaling, and is given by a combination of the
scaling dimensions of the fields ψ and A.

The partition function of a quantum system can be written as

Z = Tr < ψ|U(iβH,0)|ψ >, (3.5)

where the trace is taken over all possible gas configuration.
H is the complete Hamiltonian for the interacting systems, but in the Schwinger perturbative

approach it is usual to write the amplitude in terms of the free-fields Hamiltonian, Ho, and in terms
of the coupling constant, g, resulting in

< ϕ|U(iβH,0)|ϕ >=< ϕ|U(iβHo,0)|ϕ >+< ϕ|gU(iβHo,0)|ϕ >+ . . . . (3.6)
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In the one-particle irreducible representation, those states can be written as

|ϕ(n)>= S
N(n)

∏
i=1
|ϕ(mi, pi)>, (3.7)

where |ϕ(mi, pi) > represents the state of a particle with mass mi and momentum pi, and is an
autovector of the Hamiltonian Ho,i such that Ho = Ho,1 +Ho,2 + . . . . The states |ϕ(mi, pi)> corre-
spond to parton states with self-energy calculated up to order n, and we will refer to these states as
effective partons. S represents the (anti)simmetrization operator.

The perturbative approach given by Eq. (3.6), is represented by diagrams like those shown in
Fig. 1. The scale invariance means that, after proper scaling, the loop in a higher order graph is
identical to a loop in lower orders. This is a fundamental consequence of the Callan-Symanzik
equation, and it is of great importance in what follows.

Figure 1: Scaling relation between diagrams at different orders. Red dashed lined indicates that the loop at
higher order is equivalent to a loop at a lower order if proper normalization is used.

The number of effective partons at the nth order of perturbative calculation depends on the
configuration, and by N′ we will refer to the set of configurations with N′ partons. As the order of
perturbative calculation, n, increases, the number of partons N′ tends to increase, but not linearly.
With larger numbers of partons present, high order configurations present partons with smaller
energies, and therefore with smaller fluctuations of their internal energies.

Summation of all graphs at different orders leads to the summation of configurations with dif-
ferent number of particles. Describing the system in Fokker space allows to sum over the different
number of particles, and Wick rotation gives rise to the Boltzmann factor, hence we obtain the
partition function of the gas1

Z = λ
−D

∑
{N′}

N′

∏
i=1

∫
dmi

[
P̃(mi)

]ν d3 p < ϕi,m|e−βHo,i |ϕi,m >, (3.8)

where we include a distribution of the internal energy, or effective mass, of the generated partons,
P̃(m), Ho,i is the Hamiltonian operator for a free particle. Here, {N′} indicates that the summation
is over all possible configurations of N′ particles gas, λ is a scaling factor, and ν is a parameter that
will be determined below. With ortonormalized states, one gets

Z = λ
−D

∑
{N′}

∏
i

∫
dmi

[
P̃(mi)

]ν e−βUid3 p . (3.9)

1For simplicity, we will use m for indicating the effective mass, instead of using the symbol m̄.

4



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
0
7
2

Fractal structure Airton Deppman

The relativistic energy can be written as Ui = mi + p2
i /(2mi) +O(p4/m3) and in this case,

Equation 2.1 can be written in terms of m and K as

P(U)dU = λ
−D

∑
{N′}

∏
i

(
F
kT

)3N/2−1

e−αF/kT d
(

K
kT

)
AkT

[
P̃(mi)

]ν dµ

F
, (3.10)

where

F =
p2

i

2mi
(3.11)

and
α = 1+

mi

Fi
+O(p2

i /m2
i ) . (3.12)

Of course we have
Ui = αFi . (3.13)

For future convenience, we introduce the variable ε such that

εi

kT
=

mi

Fi
+O(p2

i /m2
i ) (3.14)

Since m and p are independent, also ε and K are independent, we can integrate the equation
above on the kinetic energy, K, resulting

P(U)dU = λ
−D

∑
{N′}

AkT ∏
i

Γ(3N/2)
(

1+
ε

kT

)3N/2 [
P̃(ε)

]ν dε

K
, (3.15)

where we made use of the relation dε = dµ/K. Notice that, due to scale invariance, the parent
parton represented by the initial line in the graph must have the same properties as any other parton
in the system, after proper scaling. Therefore P(U), which is the fluctuation of the internal energy,
can be understood as the distribution of the parton mass, thus

P(U)∼ P(ε) , (3.16)

that is, there is self-similarity in the gauge field.
Relation (3.16) shows that the internal energy, U of the parent parton fluctuates according to

the same distribution that the internal energy of its constituents do. The internal energy is identified
with the parton effective energy.

These results are similar to those obtained for thermofractals by following a completely differ-
ent approach [7, 8], where Eqs. (3.10) and (3.15), as well as the self-similarity relation (3.16). This
result shows that if Tsallis statistics is used in thermodynamical approaches to hadronic physics
all details of the complex structure are naturally incorporated in the thermodynamical relations de-
rived from the entropic form proposed for such statistics [5], what facilitates the calculations. In
what follows, 1/kT will be considered our scaling parameter, with the same meaning as M in the
Callan-Symanzik equation.

According to relation (3.16), the properties of a parton at any scale are similar to the properties
of the partons at another scale, and the distribution of the internal energy at the parent parton, after
proper rescaling, is equal to the distribution of internal energy, or effective mass, of its components.
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Since the energy and momentum of the partons are defined at the vertex, it is natural to suppose
that the effective constant at each vertex is related to the distribution of mass of the compounding
partons. Thus we use the following ansatz for the effective coupling:

ḡ =
N′

∏
i=1

[
1+(q−1)

εi

kτ

]− ν

q−1
, (3.17)

with N′, here, referring to the number of branches in the first order expansion, what depends on the
field topology. For quark and gluon fields, for instance, N′ = 2, as well as for the field represented
by the graphs in Figs 1.

It is interesting to note, at this point, the asymptotic behavior of the effective coupling proposed
here. This can be done by considering an initial scale, To, where the coupling is determined, that is,
ḡ(To) = g, and the effective parton mass is m. Now we observe how the coupling constant behaves
as we go to the next order by adding a loop in the graphical representation, as shown in Fig. 1. The
variation of the effective coupling with respect to its initial value, g, at the initial scale is

δ ḡ = gN′
δg , (3.18)

with the factor gN′ coming from the field topology. From the definition of the coupling in Eq. (3.17),
we have

M
δg
δM

= ∑
j=1

N′ḡMε j [1+(q−1)Mε j]
−1 . (3.19)

From here we can obtain the beta function, βg, at the asymptotic limit, M → 0 which, using
Eqs. (3.18) and (3.19), results to be

βg =−
N′ν
q−1

gN′+1 . (3.20)

Hence the field theory is asymptotically free if q > 1.
The asymptotic limit has been useful to understand many aspects of high energy collisions,

and in particular to understand the asymptotic behavior under scale transformation. Here we can
use this limit to understand the meaning of the parameter q introduced in connection with the
thermodynamical interpretation of the vertex function. From the Callan-Symanzik Eq. 3.3, we get,
since the gauge theory satisfies such equation, that

d− N′ν
q−1

− γ = 0 , (3.21)

where we have used the fact that the Γ function scales with a dimension D = Do + d and that the
fields and operators in the vertex function scales with Do + γ . From here we obtain the relation
between the parameter q, which in Tsallis statistics is the entropic index, in terms of parameters
that are intrinsic to the gauge field structure. In the case of QCD, where ψ refers to quark fields
and A refers to gluon fields, we have N′ = 2, therefore

2ν

q−1
= d− γ . (3.22)
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The parameters d and γ are related to the intrinsic features of the fields and of the particular Γ

function analyzed. The anomalous dimensions for the vector and fermion fields may be different,
and they contribute proportionally to the number of external lines corresponding to each field, so

γ = nγA +n′γψ . (3.23)

A quantitative comparison must show that the value for q found in experimental data analysis
corresponds to the value determined by Eq. (3.29). To this end, we write Eq. (3.5) in terms of the
field propagators, G f , with f = A or f = ψ for the vector and fermion propagators, respectively.
With this, we obtain

Z = ∑
{N′}

∫
(2π)4N′ki < ϕ|∏

f=1
N′G f ḡ|ϕ >, (3.24)

where ki = pi/(2π). First order approximation it will lead to[14]

Z = Zo

[
1+

1
16π2 g2

γln
(
−p2

M2

)]
, (3.25)

what leads to

δZ = Z−Zo =

[
1

16π2 g2
γln
(
−p2

M2

)]
Zo . (3.26)

It follows from here and from Callan-Symanzik equation that

2ν

q−1
= d− (nγψ +n′γA) , (3.27)

where the amplitude anomalous dimension, d, is such that [12]

d− (nγψ +n′γA) =

[
11
3

c1−
4
3

c2

]
g2 . (3.28)

Therefore, we find
2ν

q−1
=

[
11
3

c1−
4
3

c2

]
, (3.29)

where {
c1δab = facd fbcd

c2δab = trTaTb ,
(3.30)

therefore relating the entropic index, q, to fundamental parameters of the field theory.
Such fractal structure implies Tsallis statistics, and gives a phenomenological motivation to the

use of non extensive statistics in high energy collisions, and explains why Hagedorn’s theory must
be modified to accommodate non extensivity. In fact, the non extensive self-consistent thermody-
namics [6] predicts power-law distributions for energy and momentum that are in good agreement
with experimental data [19, 20, 21] , and gives a hadron mass spectrum formula which can de-
scribe the mass distribution of the known hadrons, starting from pion mass [20]. All these results
are accomplished with a parameter q which is approximately independent of the collision energy
and of the particle species, with q = 1,14± 0.01. Qualitatively, this finding is in agreement with
the conclusion we arrived in the present work, with the parameter q found to be related to constant
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parameters that are related to the structure of the field theory. Now we proceed to a quantitative
comparison between the value of q found from the parameters of QCD, as described in Eq. (3.29),
and the value obtained from experimental data analyses.

Quantitatively, the parameters c1 and c2 are related to the number of colors and flavors by
c1 = Nc and c2 = N f /2. Using Nc = N f /2 = 3 we get

11
3

c1−
4
3

c2 = 9 , (3.31)

which, using Eq. (3.29), leads to q = 1.11, while from experimental data analysis it results q =

1.14±0.01, showing a fair agreement between theory and experiments. It must be noticed that the
analyses of pp collision data are performed assuming that there are no other effects on the outcome
of measured transversal momentum, such as elliptic flow, however today it is clear that even in
such small systems this effect is present, and can interfere on the value of q obtained through pT -
distribution analysis. In fact, from the study of hadron mass spectrum [20] the value for q is in
better agreement with the theoretical one.

The results obtained here gives a solid basis in terms of QCD for the thermodynamical ap-
proach used many times to describe high energy data. Also, it explains the self-similarity that has
been observed by different means in the outcomes of high energy collisions [22, 23, 24] and the be-
havior of hadron mas spectrum [20]. Applications of such phenomenological approaches have been
used to calculate the equation of states for neutron stars [25], to evaluate the phase-transition line
at finite chemical potential [26] and to understand the hadron structure [27]. All those applications
can now find support from QCD theory.

4. Conclusions

In conclusion, we have shown in the present work that renormalizable field theories leads to
fractal structures, which can be studied, from a thermodynamical point of view, with Tsallis statis-
tics. A recursive method allows to perform non perturbative calculations to describe the particles
structure governed by the gauge theory. In the case of multiparticle production, the calculations
lead to a thermodynamical description where non extensive statistics must be used. The results
obtained here give a solid basis from QCD to the use of non extensive self-consistent thermody-
namics to describe properties of strong interacting systems and to the use of thermofractal structure
to describe hadrons.
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