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1. Introduction

QCD factorization implies that the cross-section of hard hadronic processes can be written
in terms of convolution of partonic cross-section and parton distribution functions. In the case of
quarks the parton distribution function (PDF) can be defined in terms of matrix element of quark
bilinear operator of the fast moving hadron

q(ξ ) =
1

4π

∫
dξ
−eixP+ξ− 〈H(P)| ψ̄(ξ−)γ+WL(ξ

−,0)ψ(0) |H(P)〉 , P→ ∞ (1.1)

where WL(ξ
−,0) = eig

∫ ξ−
0 dξ−A+

is a straight Wilson Line on the light-cone, and ξ± = (t± z)/
√

2.
First principle calculation of PDF is not possible because lattice QCD is formulated in Euclidean
space-time and thus cannot access quantities defined on the light-cone. To circumvent this problem
it has been proposed to calculate quasi parton distribution function (qPDF) defined in terms of
spatially separated quark bilinears [1].

q̃(x,Pz) =
1

4π

∫
dze−ixPzz 〈H(P)| ψ̄(z)ΓWL(z,0)ψ(0) |H(P)〉 , (1.2)

where Γ is either γz or γt . For sufficiently boosted hadron one can use Large Momentum Effective
Theory (LaMET) [2] to relate qPDF to PDF:

q̃(x,µL,Pz) =
∫ +1

−1

dy
|y|C

(
x
y
,
Pz

µ
,

µL

Pz

)
q(x,µ). (1.3)

Here µL and µ are the renormalization scales of the schemes in which qPDF and PDF are defined.
For the later MS scheme is used. The matching kernel has been calculated at 1-loop using cutoff
scheme [3] as well as in MS scheme [4, 5, 6]. For a comprehensive discussion on LaMET and
related approaches see the recent review Ref. [7]. In this contribution we describe an exploratory
study of pion PDF within LaMET framework.

2. Lattice setup

For calculations of PDF it is important to explore small values of z. Therefore, we use lattices
obtained using Highly Improved Staggered Quark (HISQ) action with lattice spacing 0.06 fm gen-
erated by HotQCD collaboration [8]. The lattice size is 483×64. We use Wilson-Clover action for
valence quarks on HYP smeared gauge configurations [9] to avoid exceptional configurations. Very
similar setup has been used by PDME collaboration albeit for 2+1+1 flavor MILC configurations,
see e.g. Ref. [5]. For the valence quarks we use quark masses corresponding to pion mass of about
300 MeV. For this quark mass we do no see exceptional configurations. For the calculations of the
two point and three point functions we we used All-Mode Averaging (AMA) [10] with 32 sloppy
calculations to one exact solve for each configuration. For the sloppy inversion we use stopping
criteria of 10−6. We performed calculations using 168 gauge configurations for z < 0.48 fm and 52
gauge configurations for 0.48 fm < z < 1 fm. In our study we neglect disconnected diagrams.
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Table 1: The energy difference between first excited state and the ground state for different Pz.
Pz(Ncfg) 0 GeV (52) 0.86 GeV (168) 1.29 GeV (168) 1.72 GeV (168)
∆E2,1 1.39(38) GeV 1.26(04) GeV 1.15(08) GeV 1.32(36) GeV

3. Analysis of the two point function

Obtaining a good signal for high momentum pion is non-trivial as the noise becomes an issue at
large time separations. Therefore, the choice of the appropriate interpolating fields is important. To
increase overlap with the ground state we use Gaussian sources for the pion. These are implemented
either with Wuppertal smearing [11] or using Coulomb gauge. We find that 90 steps of Wuppertal
smearing is the optimal choice that combines relatively fast approach of the effective masses to a
plateau with statistical errors that are not too large. The source size corresponding to 90 steps of
Wuppertal smearing is about 0.3fm. The Coulomb gauge Gaussian sources of this size result in
similar errors for the effective masses. Since the use of Coulomb gauge Gaussian sources turned
out to be less expensive numerically we adopted this choice.

For pion momenta of about 1 GeV or larger the two point functions is very noisy. To improve
the signal following Ref. [12] we use boosted sources, where the valence quarks are boosted to
momentum~k = ζ~P, with ~P being the pion momentum and ζ is some number. Naively one would
expect that the optimal choice is ζ = 0.5. In Figure 1 we show the effective masses for boosted
Coulomb gauge Gaussian sources for different values of ζ at momentum 0.86 GeV, 1.29 GeV, and
1.72 GeV. At momentum 0.86 GeV we see significant improvement for both ζ = 0.5 and ζ = 1.0.
At 1.29 GeV the non-boosted sources are very noisy and are not shown in the figure. Furthermore,
ζ = 1.0 turns out to be too large while ζ = 0.67 yields the best results. At 1.72 GeV using ζ = 0.5
is not sufficient, while the choices ζ = 0.75 and ζ = 1.00 give similar results. It is clear, however,
that even with boosted sources extracting the ground state at high momenta is difficult.

Next we performed two state fits for the pion correlation function

C2pt(Pz, t) =
2

∑
i=1

2Aie−
1
2 EiT cosh(Ei(T/2− t)), (3.1)

to obtain the energies of the ground state and the excited state for different momenta Pz. Here
T is the time extent of the lattice and Ai = | 〈i|π〉 |2. The results for the ground state energy as
function of Pz are shown in Figure 1. As one can see from the figure the determined energies
follow the expected dispersion relation. In Table 1 we present the difference of the excited state
energy with respect to the ground state energy for momenta 0 GeV, 0.86 GeV, 1.29 GeV, and 1.72
GeV. Interestingly, we find that this energy gap is approximately independent of Pz.

4. Calculations of Three-Point Function

To obtain the pion qPDF defined in Eq. (1.2) we consider the ratio of the three-point to the
two point function

R(∆t,τ,z;Γ) =
〈π(~p,∆t)OΓ(z,τ) ¯π(0)〉
〈π(~p,∆t) ¯π(0)〉

=
∑n,n′ AnA∗n′e

−En∆te−(En′−En)τ 〈n|OΓ(z) |n′〉
∑m |Am|2e−Em∆t (4.1)
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Figure 1: Left: effective masses for different values of ζ with 50 configurations, Green, blue, and black
points correspond to momentum 0.86, 1.29, and 1.72 GeV respectively. Right: the energy of the ground
state as function of Pz from the two state fit.

where An = 〈π|n〉,
OΓ(z) = ψ̄(z)ΓWL(z,0)ψ(0), (4.2)

∆t is the source-sink separation, and τ is the operator insertion time, such that 0 < τ < ∆t. For
large ∆t and τ the above ratio gives the qPDF. Inserting a complete set of states and truncating the
sum to the two lowest terms we write

R(∆t,τ,z;Γ)∼ M (z)+A (z)e−∆E2,1τ +A †(z)e−∆E2,1(∆t−τ)+B(z)e−∆E2,1∆t + ...

1+C e−∆E2,1∆t + ...
. (4.3)

Here, M (z)= 〈1|OΓ(z) |1〉 is the desired quantity, A (z)= A1A∗2
|A1|2 〈1|OΓ(z) |2〉, B(z)=C 〈2|OΓ(z) |2〉,

and C = |A2|2
|A1|2 .

In order to improve the signal we used one level of HYP smearing in the Wilson line entering
Eq. (4.2). The ratio R(∆t,τ,z;Γ) obtained with one level of HYP smearing is larger compared to
the unsmeared case. This is expected as smearing reduces the size of the self energy divergence in
the Wilson line, see e.g. Ref. [13]. To obtain PDF one can use Γ = γt or γz. The choice Γ = γt has
the advantage that in this case there is no mixing with the quark bilinear operator with Γ = 1 [4]. It
also turns out that excited state contamination is smaller for Γ = γt . In what follows we discuss the
calculations using one level of HYP smearing and Γ = γt .

In Figure 2 we show the z dependence of R(∆t,τ,z;γt) for three source sink separations, ∆t =
8, 10 and 12, and τ = ∆t/2. The data points have been shifted horizontally for better visibility. We
see a weak dependence on ∆t indicating that the contribution of the excited states to R(∆t,τ,z;γt)

is small. To extract the ground-state quasi-PDF matrix element we employ two fitting procedures
used in Refs. [14, 15]. First we use the summation method [15]. Here one sums over all τ minus a
certain number of end points τo

Rsum(∆t,z;Γ) =
∆t−τo

∑
τ=τo

R(∆t,τ,z;Γ)∼ (M +Be−∆E2,1∆t)(∆t−2τo)+ const. (4.4)
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Figure 2: R(∆t,τ,z;γt) at Pz = 1.72 GeV as function of z for ∆t/a = 8 (blue), 10 (orange), and 12 (green)
and τ = ∆t/2.

We calculate Rsum(∆t,z;Γ) according to the above equation and then perform a linear fit with re-
spect to ∆t − 2τo. The slope obtained from the fit gives M for large enough ∆t. In Fig. 3 we
show the results of the summation method for z = 0 fm and z = 0.24 fm and Pz = 1.72 GeV using
τo = 1 and τo = 2. For both values of z the choice τo = 2 gives the most precise result. The second
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Figure 3: Rsum at Pz = 1.72 GeV as function of ∆t−2τo for z = 0 (left) and z = 0.24 fm (right). The lines
show the fit results and the bands show the corresponding uncertainty. Red and blue data points and bands
are for results with τo = 1 and τo = 2 respectively.

method relies on simultaneous fit of the ∆t and τ dependence of the ratio R(∆t,τ,z;γt) to the form
given by Eq. (4.3), which we refer to as the two-state fit [14]. Here we use ∆E2,1 obtained from the
two-point correlator and summarized in Table 1 and treat M , A , and B as fit parameters.

In Fig. 4 we show our results for M obtained using the summation method and two-state fit.
We also compare M with the R(∆t,τ,z;γt) evaluated at ∆t = 10 with the τ = ∆t/2. For the real
part the two methods extracting M agree within errors and also agree with R(∆t = 10,τ = 5,z;γt).
This means that excited state contributions are under control. The imaginary part of M obtained
with the summation method does differ somewhat to the results with two-state fit and ImR(∆t/a =

4
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10,τ/a = 5,z;γt), meaning that excited states have some effects in the imaginary part.
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Figure 4: The real part (left) and the imaginary part (right) of M for Pz = 1.72 GeV. obtained using the
summation method and the two-state fit. We also show our results for R(∆t/a = 10,τ/a = 5,z;γt).

5. Calculating the parton distribution

The matrix element M that defines the qPDF needs to be renormalized. We perform the renor-
malization using regularization independent momentum subtraction (RI-MOM) scheme. To define
the renormalization constant one calculates the expectation value of the non-local quark bilinear
in Eq. (4.2) on off-shell quark states: Λ(p,z) = 〈p|Oγt (z) |p〉. The renormalization condition is
defined such that the renormalized matrix element ΛR(p,z) = Z(z, pR

z , pR)Λ(p,z) satisfies the con-
dition Tr/pΛR(p,z)|p=pR = 12pR

t exp(−ipR
z z), i.e. it equals to the tree level result for p = pR. The

RI-MOM scheme here depends on two renormalization scales: pR
z and p2

R = (pR
z )

2 +(pR
⊥)

2, be-
cause the z direction plays a special role. In other words, for RI-MOM scheme µL = {pR

z , p2
R}. A

more detailed discussion of our RI-MOM renormalization procedure is given in Ref. [16]. Multi-
plying the bare matrix element by Z(z, pR

z , p2
R) we get the renormalized matrix element M R, which

then can be used to calculate the qPDF according to Eq. (1.2). In our preliminary study we used
R(∆t/a = 10,τ/a = 5,z;γt) as proxy for M . As discussed in the previous section the excited state
contamination is small for ∆t/a = 10. To perform the Fourier transformation in Eq. (1.2) we need
to information about M R for all z. However, our numerical calculations only cover the value of
|z| up to 1 fm. Since M R decays rapidly at large z we assume that it vanishes for |z/a| = 20 and
perform interpolation of the lattice results on M R with this constraint. Using this interpolation we
calculate the qPDF q̃(x,Pz, pR

z , pR) [16]. The resulting qPDF are shown in Fig. 5 as dashed lines.
We checked that the numerical results do not change much if we assume that the coordinate space
qPDF vanishes at |z/a| = 24. To calculate PDF from qPDF we invert Eq. (1.3) to leading order
in αs. The matching kernel C entering Eq. (1.3) for Γ = γt and qPDF in RI-MOM scheme has
been calculated at 1-loop in Ref. [5], and we make use of the corresponding result in our analysis.
Our results for pion PDF are shown in Fig. 5. We see that for Pz ≥ 1.29 GeV the dependence
of the reconstructed PDF on Pz is very small. The PDF should be independent on RI-MOM scale
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Figure 5: Left: PDF and qPDF for different values of Pz. Right: the dependence of PDF and qPDF on the
RI-MOM renormalizations scales for Pz = 1.72 GeV.

parameters pR
z and p2

R because this dependence cancels out between qPDF and the matching kernel
C. In practice, however, this cancellation is not exact as the matching kernel is only know at 1-loop.
From Fig. 5 we see that the dependence on pR

z and pR is rather mild, which is encouraging and
indicates that the outlined strategy for calculating PDF is viable.

6. Conclusions

In this contribution we presented preliminary calculations of quark distribution inside the pion
from lattice QCD based on Large Momentum Effective Theory approach by Ji. We used fine
lattices (a = 0.06fm) in order to utilize the pertubative matching between qPDF and PDF. To obtain
the renormalized qPDF we used the non-perturbative RI-MOM scheme. Obtaining the ground
state signal for the fast moving pion is very challenging and in order to reach this goal we used
momentum boosted sources. With these we were able to reach pion momenta up to 1.72 GeV. In
order to perform calculations at even larger values of Pz significantly more statistics will be needed.
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