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We study the nonperturbative structure of the quark-photon vertex in Landau gauge. To this
end, we utilize lattice QCD data for the vector current for two mass-degenerate quark flavours
and extract all longitudinal and transverse form factors of the underlying vertex for two off-shell
kinematics. The momentum dependence of the form factors is compared to the solution of the
inhomogeneous Bethe-Salpeter equation for the vertex in the rainbow-ladder approximation. Dif-
ferences but also similarities are seen between our lattice and the truncated continuum results.
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1. Motivation

k

Q

k+k−

Figure 1: Quark-photon vertex.

Determinations of electromagnetic properties of hadrons us-
ing the bound-state approach to QCD require the full, off-shell
tensor structure of the quark-photon vertex as input. In particular
the case where a virtual photon couples to a strongly interacting
off-shell quark and antiquark pair inside a hadron is of interest
(see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]).

For on-shell quarks two form factors are sufficient to parametrize
the quark-photon vertex. For an off-shell kinematic there are more degrees of freedom. A common
parametrization of the off-shell quark-photon vertex in the continuum reads [11]

Γµ(k,Q) = iγµλ1 +2kµ [i/k λ2 +λ3] +
8

∑
n=1

i fnT (n)
µ (k,Q) . (1.1)

Here k is the average of the respective incoming and outgoing quark momenta, k± = k±Q/2, and
Q is the photon momentum (see Fig. 1). The 11 form factors, λ1,2,3 and f1,...,8, are functions of the
Lorentz-invariants Q2, k2 and ζ 2 = (k ·Q)2/k2Q2, and the base tensors T (n)

µ (k,Q) are chosen such
that the last term in Eq. (1.1) is strictly transverse to Q.1 This parametrization has the advantage that
one obtains λ1,2,3 directly from the two dressing functions of the nonperturbative quark propagator
S(k±) by exploiting the Ward-Takahashi identity (WTI)

QµΓµ(k,Q) = S−1(k+)−S−1(k−) . (1.2)

The transverse form factors, f1,...,8, are not fixed by this WTI, but can be found, at least in
principle, by solving the inhomogeneous Bethe-Salpeter equation of the quark-photon vertex

Γµ(k,Q) = Z2γµ −Z2
2

4
3

∫ dq4

(2π)4

[
S(q+Q/2)Γµ(q,Q)S(q−Q/2)

]
K(k−q) . (1.3)

Here Z2 denotes the quark wave function renormalisation factor of the quark propagator and K is
the quark-antiquark scattering kernel. Solving this equation, however, requires knowledge of the
nonperturbative momentum dependences of S and K. They satisfy their own Dyson-Schwinger
equations (DSEs) and hence involve further n-point functions. Strictly speaking, Eq. (1.3) leads to
an infinite system of equations which for a numerical treatment has to be truncated in a suitable
way.

A frequently used truncation for the quark-photon vertex is the rainbow-ladder truncation
scheme [1, 2]. In this scheme the scattering kernel is given by an effective one-gluon exchange,

Kρσ ,αβ (k) = γ
αρ

µ T k
µνG(k2)γ

σβ

ν with T k
µν = δµν − kµkν/k2 , (1.4)

where T k
µνG(k2) is an effective (modelled) gluon propagator and S(k±) is found from a correspond-

ingly truncated quark DSE. In rainbow-ladder truncation one can solve Eq. (1.3) numerically (see,
e.g., [1, 2, 12]), but the systematic error is hard to control without additional input, for instance
from lattice QCD.

1For a definition of the transverse base tensors T (n)
µ see, e.g., Appendix B of Ref. [11].

1



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
0
9
5

Quark-photon vertex from lattice QCD in Landau gauge André Sternbeck

no. β κ V a [fm] ZV mπ [MeV] m [MeV]
C-I 5.20 0.13550 323×64 0.081 0.7219 681 36.7
C-III 0.13584 323×64 409 14.2
C-IV 0.13596 323×64 280 6.3

E-III 5.29 0.13620 323×64 0.071 0.7364 422 17.0
E-IVs 0.13632 323×64 295 8.1
E-IV 0.13632 643×64 290 8.1
E-IIV 0.13640 643×64 150 2.1

F-II 5.40 0.13640 323×64 0.060 0.7506 490 24.6
F-III 0.13647 323×64 426 18.4
F-IV 0.13660 483×64 260 7.0

Table 1: Our N f = 2 gauge ensembles and their parameters. The mπ -column quotes the respective pion
mass and the last column the bare quark mass m = m0−mc(β ). Both mπ and mc(β ) were provided by the
RQCD collaboration [14]. The ZV values are updates of those in [15] and correspond to r0 = 0.5fm and
r0ΛMS = 0.789.

2. Lattice setup

Lattice QCD provides direct access to the vector-current 3-point function

Gµ(k,Q) = ∑
x,y,z

eik−(x−z)eik+(z−y) 〈D−1
U (x,z) iγµ D−1

U (z,y)
〉

U (k± ≡ k±Q/2) (2.1)

in Landau gauge. Here D−1
U denotes the inverse Wilson clover fermion matrix and the gauge links

U satisfy the Landau gauge condition. With corresponding lattice Monte Carlo estimates for the
quark propagator S(k±) one obtains the vertex

Γµ(k,Q) = S−1(k−Q/2) Gµ(k,Q) S−1(k+Q/2) . (2.2)

for a discrete mesh of momenta, k and Q, without having to solve its inhomogeneous BSE. The
calculation is similar to a lattice calculation of RI’SMOM renormalisation constants [13], but with
the difference that one extracts the full tensor structure of the vertex, that is the dependence of
the 11 form factors λ1,2,3 and f1,...,8 on k2, Q2 and ζ 2. These are obtained from a projection of the
tensor structure [Eq. (1.1)] onto the lattice result for Γµ [Eq. (2.2)]. The RI’SMOM renormalisation
program for this vertex would only target λ1 at a fixed renormalisation scale, e.g., k2

± = Q2 =−µ2.
For the calculation of Gµ(k,Q) and S(k±) we use momentum-volume sources for the inversion

of DU . This keeps statistical errors low, even on a few gauge configurations, but requires a separate
inversion for each momentum k±. We choose two momentum setups: (i) a symmetric setup where
k2
− = k2

+ = Q2 and hence ζ = 0, and (ii) an asymmetric setup where k2
− = Q2 > k2

+ and ζ = 1/
√

5.
In addition we employ twisted boundary conditions for the fermions, ψ(x+ µ̂Lµ) = eiπτµ

ψ(x),
to refine our momentum mesh. Specifically, we use the following two sets of lattice momenta
akµ

± = 2πnµ

±/Lµ :

(i) n− = n(1,1,0,0)+(τ,τ,0,0) n+ = n(0,1,1,0)+(0,τ,τ,0) (2.3)

(ii) n− = n(2,1,0,0)+(2τ,τ,0,0) n+ = n(0,1,1,0)+(0,τ,τ,0) (2.4)
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Figure 2: Comparison of our preliminary lattice results (points) to rainbow-ladder (RL) results (bands) for
the form factors λ1,2,3 of the quark-photon vertex from [12, 16]. The bands encode the angle dependence
of the RL results. For better comparison they have been rescaled by a global factor such that λ1 = 1 for
k2 +Q2/4→ 0.

with n = 1,2, . . . ,Ls/4 and τ = 0,0.4,0.8,1.2 and 1.6. Here Ls is the spatial lattice extent which
ranges between Ls = 32 and 64; the temporal extent is always Lt = 64. Our calculations are per-
formed for three different lattice spacings (a' 0.06 . . .0.08fm) and a range of quark masses down
to an almost physical mass. This allows us to analyse discretisation, quark mass and volume effects.
Table 1 gives an overview about the parameters of our gauge ensembles.

For our calculation we use the local vector current which violates the WTI [Eq. (1.2)] on the
lattice. Hence there is an additional renormalisation factor, ZV < 1, for the vector current, which
however is known for our β values from other studies. We apply the nonperturbative values from
the RQCD collaboration listed in Table 1.

3. Lattice results for the form factors

Our preliminary lattice results for the form factors λ1,2,3 and f1,...,8 are shown in Figs. 2 and 3,
respectively. For λ1,2,3 we show them as a function of k2 +Q2/4 and for f1,...,8 versus S0 ≡ k2/3+
Q2/4. This simplifies the comparison with the available continuum results. For λ1 we show our
lattice results for both momentum setups, symmetric and asymmetric. For λ2 and λ3 only results
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Figure 3: As Fig. 2 but for the transverse form factors f1,...,8. The lattice results are yet preliminary.
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for the asymmetric setup are shown. Similar holds for f2, f5, f6 and f7 in Fig. 3. For f1, f3, f4 and
f8 we show results for the symmetric setup, but the asymmetric results look alike. Overall we find
that the angle (ζ 2) dependence is small. For comparison, both figures also show the corresponding
continuum results which were obtained from solving Eq. (1.3) in rainbow-ladder (RL) truncation by
Eichmann and others [12, 16, 17]. We see qualitative similarities but also quantitative differences,
in particular for low momenta. The largest deviation we see for f2, f4, f7 and f8. For f2 this could
be due to a wrong sign in the RL solution, because the RL solution shown in [17] has the opposite
sign which much better fits to the lattice data. Compared to the deviations we see between the
RL and lattice results, discretisation or quark mass effects in our lattice data are negligible. Our
lattice results therefore provide a very useful guide for the search of improved truncation schemes
beyond RL. Still the statistics of our lightest quark-mass ensemble has to be increased to improve
the precision at small momentum.

4. WTI and the quark-photon vertex on the lattice

Lattice discretisation effects are small compared to the deviations we see between RL and
lattice results. However, when looking at the lattice data at a finer resolution, dependencies on both
the quark mass m and the lattice spacing a are seen. Let us demonstrate this for the case of λ1. This
form factor is particularly interesting since in the continuum limit it is solely given by the dressing
functions A(p2) of the quark propagator

S−1(p) = i/pA(p2)+B(p2) , (4.1)

while on the lattice—with Wilson fermions and using the local vector current—there are deviations
which only disappear with a.
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Figure 4: λ1 vs. k2
± for symmetric momenta, i.e., k ·Q = 0. The full symbols (λ1) are for results extracted

from Γµ , while results with open symbols (λ S
1 ) are obtained from the quark propagator. The left panel shows

results for three different lattice spacings but similar quark masses; the right panel for varying quark masses
but fixed lattice spacing.

In Fig. 4 we show lattice results for λ1 vs. k2
± for symmetric momenta, extracted either from

Γµ or S (the latter are the open symbols labelled λ S
1 ). We see that multiplying Γµ with ZV brings

λ1 and λ S
1 in the same ballpark of values, but momentum dependent deviations for small and large

momenta remain. Overall, λ1 changes more strongly with momentum than λ S
1 . This discrepancy
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is expected because the momentum dependent deviation in the vector WTI for the local vector
current is not accounted for in ZV (see, e.g., [18]). For larger momenta the deviations grow with
the lattice spacing and momentum, in particular for λ S

1 . In contrast, for smaller momenta there is a
clear dependence on the bare quark mass am: for fixed k2

±, the gap between λ1 and λ S
1 grows with

a and m.
From an independent lattice study [19]
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Figure 5: Same as Fig. 4, right, but for λ S
1 from an

O(a)-improved Wilson fermion propagator [19].

we know the quark dressing function of an
off-shell O(a)-improved Wilson fermion prop-
agator for the same lattice parameters. The
corresponding data points for λ S

1 are compared
to λ1 in Fig. 5. We see that the gap at small
k2
± is much smaller for the O(a) improved re-

sults. An improvement is also seen for larger
k2
± but there the effect is comparably smaller.

Unfortunately, we have no data yet for the
vector current using the improved quark prop-
agator in Eq. (2.1). Nonetheless, it seems a
large part of the O(a) effects is cancelled in
Γµ by the amputation of the external quark legs [Eq. (2.2)].

5. Conclusion and outlook

We have calculated for the first time the nonperturbative QCD corrections to all 11 non-zero
form factors of the quark-photon vertex for two off-shell kinematics. Until now only results from
a solution of a RL-truncated inhomogeneous Bethe-Salpeter equations were known. Our lattice
results give now a first impression for the full solution and hence on the systematic error of the
RL truncation. Still our results are afflicted by systematic errors as well, in particular for larger
momenta where discretisation artefacts cause deviations of the momentum dependence. Also for
small momenta the finite bare quark mass has an effect. These artefacts are however negligible
compared to the deviations we see between the RL results and our lattice QCD results. Our lattice
results provide therefore a useful guide for the search of improved truncations and on the systematic
error of current truncations used for hadron physics calculations within the bound-state approach.
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