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The Born-Oppenheimer approximation is the standard method for the studying atoms and
molecules. It is founded on the observation that the energy scale of the electron dynamics in a
molecule is larger than that of the nuclei. A very similar physical picture can be used to describe
QCD states containing heavy quarks as well as light quarks and gluonic excitations. In this com-
munication I present selected results of a recent work [N. Brambilla, G. Krein, J. Tarrús-Castellà
and A. Vairo, Phys. Rev. D 97, 016016 (2018)] in which the Born-Oppenheimer approximation
for atomic and hadronic molecular systems emerges as the leading-order approximation of an ef-
fective field theory obtained by sequentially integrating out degrees of freedom living at energies
above the typical energy scale where the dynamics of the heavy degrees of freedom occurs. As
an example, the simple case of a ion molecule formed by two heavy nuclei and one electron is
considered.
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1. Introduction and Motivation

The Born-Oppenheimer approximation (BOA) [1] has been introduced in hadron physics more
than thirty years ago [2, 3, 4, 5, 6, 7]. More recently, it has been suggested [8] that such an ap-
proximation could provide a good starting point for a coherent description of the so-called X,Y,Z
exotic hadrons. These are hadrons observed at energies above the open charm (and bottom) pro-
duction threshold. The underlying QCD dynamics governing their internal structure is yet to un-
derstood—for reviews, see Refs. [9, 10, 11, 12]. The rational for the use of the BOA in this context
is that the time scale associated with the dynamics of gluons and light quarks is small compared
to that of the heavy quarks. In fact, the BOA has been used to study heavy hybrids by means of
quenched lattice data for gluonic static potentials [13, 14, 15], but the new perspective advocated
in Ref. [8]—see also Refs. [16, 17]— is that the BOA can also be applied to hadrons with light
quarks when input from lattice simulations becomes available. In the present communication I will
present selected results from Ref. [18], in which one step further in this proposal is taken and an
effective field theory (EFT) is developed for calculating, in a systematic and controlled manner,
corrections to the BOA for QED and QCD molecular systems.

The commonly used strategy in the construction of an EFT is the sequential integration of
degrees of freedom induced by energy scales higher than the energy scale of the phenomenon of
interest. In view of the lack of space, I will concentrate on the part of Ref. [18] related to the
construction of an EFT for a QED molecule, more specifically, for a molecule formed by two
heavy nuclei and one electron. For such a molecule, the sequential process of integrating out high-
energy degrees of freedom proceeds as follows. First, hard modes associated with the masses of
the charged particles are integrated out; this leads to the well known EFT of nonrelativistic QED
(NRQED) [19, 20]. Next, soft modes associated with the relative momenta of electrons and nuclei
in NRQED are integrated out; this leads to the EFT known as potential NRQED (pNRQED) [21,
22]. Finally, the ultrasoft modes, associated with the electron and photon dynamics at the electron
binding energy scale, are integrated out; this is done exploiting the fact the nuclei move much
slower than the electrons. This results in an EFT for the motion of the nuclei only. In particular,
the BOA emerges as the leading-order approximation in this EFT and as such it is named Born–
Oppenheimer EFT (BOEFT). Because the interactions are weak, all these steps can be performed
using perturbation theory.

2. pNRQED

The starting point of BOEFT is pNRQED, an EFT suitable for describing QED at the ultrasoft
scale. This EFT for the hydrogen atom was worked out in Ref. [22]. For molecules composed by
two nuclei and one electron, it was worked out for the first time in Ref. [18]. To be specific, that
reference considered a molecule formed by two heavy particles (nuclei) with electric charge +Ze
and mass M, and a light particle (electron) with electric charge −e and mass m, with M � m.
We recall that the relevant energy scales in such a QED bound state are the masses M and m
(hard scales), the typical relative momentum p = |ppp| ∼ mv between heavy and light particles (soft
scale), and the binding energy of the light particles E ∼ mv2 (ultrasoft scale). For a Coulomb
interaction, one still have v ∼ α with α = e2/4π ∼ 1/137. In addition, for this specific case an
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extra low-energy scale appears, namely the binding energy of the heavy nuclei. The operators of
the pNRQED Lagrangian can be organized in an expansion in α and m/M. In order to homogenize
the counting in these two expansion parameters, use is made of the fact that m/M is numerically
similar to ∼ α3/2.

The Lagrangian of pNRQED can be written either in terms of the light and heavy fermion
fields, or in terms of a composite-field operator representing the bound state. The process of ob-
taining the latter from the first is well documented in the literature, see e.g. Refs. [21, 22, 23].
For the specific case of the ion-molecule, this process was performed in great detail in Ref. [18].
Because of the lack of space, this will not be repeated here and we simply quote the final result.
Before this, let us first state the center of mass (c.m.) and relative coordinates used:

RRR =
mxxx+M(yyy1 + yyy2)

m+2M
, zzz = xxx− yyy1 + yyy2

2
, rrr = yyy1− yyy2, (2.1)

where xxx is the position vector of the electron and yyy1 and yyy2 the corresponding position vectors for
the nuclei. The Lagrangian is given by [18]

LpNRQED = −1
4

∫
d3xFµν(x)Fµν(x)+

∫
d3Rd3r d3z S†(t,RRR,rrr,zzz)

[
i∂t +

∇∇∇
2
R

2Mtot
+ etotA0(t,RRR)

+eeff zzz ·EEE(t,RRR)− h0(rrr,zzz)+
∇∇∇

2
r

M
−V LO

ZZ (rrr)+
∇∇∇

2
z

4M
+

∇∇∇
4
z

8m3

−V NLO
Ze (zzz+ rrr/2,σσσ)− V NLO

Ze (zzz− rrr/2,σσσ)

]
S(t,RRR,rrr,zzz) , (2.2)

where S(t,RRR,rrr,zzz) is the field operator representing the molecule, Fµν = ∂µAν−∂νAµ , with Aµ(t,xxx)
representing ultrasoft photons (meaning that Aµ(t,xxx) must be multipole-expanded e.g. about the
c.m. coordinate RRR), Mtot is the total mass Mtot = m+2M, EEE(t,RRR) =−∂tAAA(t,RRR)−∇∇∇RA0(t,RRR) is the
electric field and eeff is the effective charge, eeff = 2eM+Zm/m+2M = e+O(α2). In addition,

h0(rrr,zzz) = −
∇∇∇

2
z

2m
+V LO

Ze (zzz+ rrr/2)+V LO
Ze (zzz− rrr/2) , (2.3)

where VZe(xxx,σ) is the electron-nucleus potential, which contains contributions of order mα2 (lead-
ing order, LO) and mα4 (next-to-leading order, NLO):

VZe(xxx,σ) =V LO
Ze (xxx)+V NLO

Ze (xxx,σe) , (2.4)

with
V LO

Ze (xxx) =−Zα

|xxx|
, (2.5)

being the ordinary Coulomb potential and

V NLO
Ze (xxx,σe) =−

Zα

m2

(
−cD

8
+4d2

)
4πδ (xxx)− icS

Zα

4m2 σσσ e ·
(

xxx
|xxx|3
×∇∇∇x

)
, (2.6)

where the last term is a spin-orbit interaction, and cD, cS and d2 are matching coefficients, which
up to order α are given by

cD = 1+
α

π

(
8
3

log
m
µ

)
, cS = 1+

α

π
, d2 =

α

60π
, (2.7)
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with µ being the dimensional regularization scale. Finally, the V LO
ZZ in Eq. (2.2) contains the LO

nucleus-nucleus Coulomb potential:

V LO
ZZ (xxx) =

Z2α

|xxx|
. (2.8)

Further contributions [24] to Eqs. (2.4) and (2.8) are beyond the desired accuracy. It is not difficult
to show that the Lagrangian in Eq. (2.2) is invariant under the gauge transformation:

A0(t,RRR)→ A0(t,RRR)−∂tθ(t,RRR), AAA(t,RRR)→ AAA(t,RRR)+∇∇∇Rθ(t,RRR), (2.9)

under which the field S(t,RRR,rrr,zzz) transforms as [18]

S(t,RRR,rrr,z)→ e−ietotθ(t,RRR) S(t,RRR,rrr,zzz) , (2.10)

where etot =−e(1−2Z) is the total charge. Note that the field S(t,RRR,rrr,z) is gauge invariant for a
charge-neutral system, etot = 0.

3. Born–Oppenheimer EFT: integrating out the ultrasoft modes

Following the logic of EFTs, the ultrasoft degrees of freedom are to be integrated out from
pNRQED to obtain an EFT at the energy scale of the two-nuclei dynamics, which is the BOEFT.
This entails to integrating out the electron and ultrasoft photons. The three-level matching contri-
butions can be obtained by expanding the field S(t,rrr,zzz) in the pNRQED Lagrangian of Eq. (2.2) in
eigenfunctions of the leading-order Hamiltonian h0(rrr,zzz) of Eq. (2.3) (the c.m. coordinate RRR does
not affect the internal dynamics of the molecule and therefore one can work in the c.m. frame,
RRR = 0):

S(t,rrr,zzz) = ∑
κ

Ψκ(t,rrr)φκ(rrr;zzz) , (3.1)

where φκ(rrr;zzz) = 〈zzz|rrr,κ〉 are the eigenstates of the electronic Hamiltonian

h0(rrr,zzz)φκ(rrr;zzz) =V light
κ (rrr)φκ(rrr;zzz), (3.2)

where the eigenvalues V light
κ (rrr) are the static energies and, for convenience, the eigenfunctions

φκ(rrr;zzz) taken to be orthonormal ∫
d3zφ

∗
κ (rrr;zzz)φκ ′(rrr;zzz) = δκκ ′ . (3.3)

Here, κ represents the set of quantum numbers specifying the electronic state for a fixed separa-
tion rrr of the nuclei—in the usual notation employed in the field, a possible ground state is denoted
by κ = 1Σ+

g . Replacing the expansion in Eq. (3.1) into Eq. (2.2), one obtains

LBOEFT = −1
4

∫
d3xFµν(x)Fµν(x)+

∫
d3r ∑

κκ ′
Ψ

†
κ(t,rrr)

{[
i∂t + etotA0(t,000)− H(0)

κ (rrr)

−δEκ(rrr)
]
δκκ ′−Cnad

κκ ′(rrr)
}

Ψκ ′(t,rrr) , (3.4)
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where the photon fields here carry energies and momenta of O
(
mα11/4

)
or smaller. The different

pieces in this Lagrangian have well-defined sizes [18]. Specifically, the leading-order term, the
nuclei-nuclei Hamiltonian

H(0)
κ (rrr) = −∇∇∇

2
r

M
+V LO

ZZ (rrr)+V light
κ (rrr) , (3.5)

has eigenvalues that scale as mα2(m/M)1/2∼mα11/4. The term δEκ(rrr) is the sum of the tree-level
and second order recoil, Breit–Pauli and one-loop ultrasoft contributions:

δEκ(rrr) = δ
recEκ(rrr)+δ

rec,2Eκ(rrr)+δ
NLOEκ(rrr)+δ

USEκ(rrr), (3.6)

where
δ

recEκ(rrr) = 〈rrr,κ|(−∇∇∇
2
z )/(4M)|rrr,κ〉, (3.7)

is of order mα7/2,

δ
rec,2Eκ(rrr) = ∑

κ̄ 6=κ

|〈rrr,κ|(−∇∇∇
2
z )/(4M)|rrr, κ̄〉|2

V light
κ (rrr)−V light

κ̄
(rrr)

, (3.8)

is of order mα7/2

δ
NLOEκ(rrr) = 〈rrr,κ|

[
V NLO

Ze (zzz+ rrr/2,σ)+ V NLO
Ze (zzz− rrr/2,σ)−∇

4
z/8m3] |rrr,κ〉, (3.9)

is of order mα4,

δ
USEκ(rrr) = − e2

6π2

{
− Ze2

2m2 [log(µ/m)+5/6− log(2)]
[
|φκ(rrr;zzz = rrr/2)|2 + |φκ(rrr;zzz =−rrr/2)|2

]
+ ∑

κ̄ 6=κ

|〈rrr,κ|(−i∇∇∇z/m)|rrr, κ̄〉|2
(

V light
κ (rrr)−V light

κ̄
(rrr)
)

× log
(

m/|V light
κ (rrr)−V light

κ̄
(rrr)|
)}

, (3.10)

is of order mα5 logα and mα5—the derivation of this latter result appears in the Appendix of
Ref. [18]. In the above, we have used the short-hand notation

〈rrr,κ|Ô(zzz,rrr)|rrr,κ〉=
∫

d3zφ
∗
κ (rrr;zzz) Ô(zzz,rrr)φκ(rrr;zzz),2)|2. (3.11)

We note that the MS scheme has been used in the derivation of δ USEκ(rrr). In addition, the µ de-
pendence there cancels against that one of cD that enters the NLO potential in δ NLOEκ(rrr). Finally,
the term Cnad

κκ ′(rrr) is the nonadiabatic coupling [25]:

Cnad
κκ ′(rrr) =

∫
d3zφ

∗
κ (rrr;zzz)

[
−∇∇∇

2
r/M φκ ′(rrr;zzz)+2/M (−i∇∇∇rφκ ′(rrr;zzz))(−i∇∇∇r)

]
, (3.12)

where the first term is of order mα7/2 and the second is is of order mα25/8.
The Euler–Lagrange equation of this EFT provides a Schrödinger equation for the molecular

energy levels. At leading order, when the nonadiabatic coupling can be neglected, the equation of
motion for the field Ψκ(t,rrr) is given by

i∂tΨκ(t,rrr) = H(0)
κ (rrr)Ψκ(t,rrr). (3.13)
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This equation is nothing else than the Schrödinger equation that describes the motion of the heavy
particles in the Born–Oppenheimer approximation [1]. On the other hand, the approximation
known [25] as the adiabatic approximation corresponds to including the diagonal term Cnad

κκ (rrr):

i∂tΨκ(t,rrr) =
[
H(0)

κ (rrr)+Cnad
κκ (rrr)

]
Ψκ(t,rrr) . (3.14)

I conclude here remarking that the BOEFT constructed in Ref. [18] is new, although NRQED
has been used for nearly two decades [20, 26] to study atoms and molecules. The new and distinc-
tive aspect in the construction of the BOEFT is that the full EFT program for the diatomic molecule
is carried out. Namely, not only the hard scale is integrated out, as in NRQED, but also the soft
and ultrasoft scales. The fact that the nuclei move slower than the electrons in a molecule, which is
at the heart of the Born–Oppenheimer approximation, is equivalent to take the kinetic term of the
nuclei to be of a smaller size than the energy scale of the electron dynamics, the ultrasoft scale. As
these two scales are well separated, it is natural to integrate out the ultrasoft degrees of freedom.
This leads to an EFT that describes the molecular degrees of freedom only. For accuracy at the level
O
(
mα4

)
, it is sufficient to match pNRQED and BOEFT at tree level. This matching is equivalent

to expanding the molecular field in the pNRQED Lagrangian in eigenfunctions of the leading-order
Hamiltonian for the electron. Loop diagrams involving ultrasoft photons, which are responsible the
molecular Lamb shift, start contributing at O

(
mα5

)
. The advantage of BOEFT is that each term in

its Lagrangian has a unique size, a feature that is particularly useful for higher-order calculations
as it greatly facilitates the determination of all the relevant contributions. All this was carried out
explicitly and discussed throughly in Ref. [18].

4. Conclusions and perspectives

The BOEFT developed in Ref. [18] can be extended in a traightforward manner to QCD
molecules, in particular to those composed of two heavy quarks bound adiabatically with some light
degrees of freedom. Doubly-heavy baryons, which were first observed last year at the LHC [27],
provide a primary example of such a possibility—this system was studied in the framework of
pNRQCD in Ref. [28]. Pentaquarks [29], hadrons formed by two heavy quarks and three light-
quarks, provide another possibility for the use of the BOEFT. This might be of particular relevance
for the study of low-energy interactions of heavy quarkonia with nucleons [30] and also nuclear-
bound quarkonia, as such systems offer the opportunity to learn about the mass distribution inside
a nucleon [31].

There is, however, a big difference between QED molecules and such QCD molecules, in that
they are determined by nonperturbative interactions. Similarly to the QED molecule discussed
here, the heavy quarks can be integrated out, as they move slower than the light degrees of free-
dom, whose dynamics appears at the scale ΛQCD, and an EFT for these QCD molecules can be
constructed by integrating out the scale ΛQCD. But, since ΛQCD is the scale of nonperturbative
physics, the matching coefficients are nonperturbative quantities and need to be determined from
models or, when they become available, from lattice calculations. When light quarks are neglected,
one obtains an EFT recently constructed for quarkonium hybrids [32]—see also Ref. [33] and the
contribution of Joan Soto to these proceedings.
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