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We study tetraquark resonances for a pair of static antiquarks b̄b̄ in presence of two light quarks ud

based on lattice QCD potentials. The system is treated in the Born-Oppenheimer approximation
and we use the emergent wave method. We focus on the isospin I = 0 channel but take different
angular momenta l of the heavy antiquarks b̄b̄ into account. Further calculations have already
predicted a bound state for the l = 0 case with quantum numbers I(JP) = 0(1+). Performing
computations for several angular momenta, we extract the phase shifts and search for T and S
matrix poles in the second Riemann sheet. For angular momentum l = 1, we predict a tetraquark
resonance with quantum numbers I(JP) = 0(1−), resonance mass m = 10576+4

−4 MeV and decay
width Γ = 112+90

−103 MeV, which decays into two B mesons.

XIII Quark Confinement and the Hadron Spectrum - Confinement2018
31 July - 6 August 2018
Maynooth University, Ireland

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:pflaumer@th.physik.uni-frankfurt.de
mailto:bicudo@tecnico.ulisboa.pt
mailto:mjdcc@cftp.ist.utl.pt
mailto:peters@th.physik.uni-frankfurt.de
mailto:mwagner@th.physik.uni-frankfurt.de


P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
1
2
3

b̄b̄ud tetraquark resonances M. Pflaumer

1. Introduction

A very challenging problem in particle physics is understanding exotic hadrons. In this work,
we investigate a tetraquark system with two heavy antiquarks b̄b̄ and two light quarks qq with
q ∈ {u,d,s,c}. While the existence of bound states has been studied in recent years applying
lattice QCD potentials and the Born-Oppenheimer approximation, a stable tetraquark state has
been predicted with quantum numbers I(JP) = 0(1+) [1, 2, 3, 4, 5, 6, 7, 8, 9]. This state has been
confirmed using heavy quarks of finite mass [10]. The current work extends this investigation by a
new technique from scattering theory, the emergent wave method [11], and we search for possibly
existing tetraquark resonances (cf. [12]).

2. Lattice QCD Potentials of two Static Heavy Antiquarks Q̄Q̄ in the Presence of
two Light Quarks qq

In previous studies, we have computed the potentials V (r) for two static antiquarks Q̄Q̄ in
the presence of two light quarks qq applying methods of lattice QCD. Calculations have been per-
formed for different light quark flavour combinations i.e. qq with q∈ {u,d,s,c}. Moreover, several
values for the parity P and the total angular momentum of the light quarks and gluons j (cf. e.g.
[7, 8]) have been studied. For these wide range of quantum numbers, there are attractive as well
as repulsive channels. There have been identified two attractive potentials with q ∈ {u,d} which
are quite wide and deep. These are most promising when investigating the existence of bound
tetraquark states or resonances. The two attractive potentials are characterised by the quantum
numbers (I = 0, j = 0) and (I = 1, j = 1). The potentials are illustrated in Fig. 1 for lattice spacing
a≈ 0.079 fm and u/d quark masses corresponding to a pion mass mπ ≈ 340 MeV.
It is well-known, that the binding energy and hence the existence or non-existence of a stable
tetraquark state depends on the light quark mass [7]. Thus, we have performed calculations for three
different light quark masses u/d corresponding to mπ ∈ {340MeV,480MeV,650MeV}. These re-
sults are used to perform an extrapolation to mπ = 140MeV. Moreover, a study of discretisation
errors and final volume effects shows that these uncertainties are negligible compared to statisti-
cal uncertainties (cf. [8]). Searching for bound states as well as resonances, we parametrize the
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Figure 1: (left) (I = 0, j = 0) potential. (right) (I = 1, j = 1) potential.
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potential by a screened Coulomb potential:

V (r) =−α

r
e−r2/d2

. (2.1)

This ansatz is motivated by a one-gluon exchange for small Q̄Q̄ separations r and the formation of
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Figure 2: (a) At small separations the static antiquarks Q̄Q̄ interact by perturbative one-gluon
exchange. (b) At large separations the light quarks qq screen the interaction and the four quarks
form two rather weakly interacting B mesons.

two B mesons at larger r as a consequence of a screened Coulomb potential (cf. Fig. 2). Even if
this approach is phenomenologically motivated, it is consistence with our lattice QCD results.
The numerical results for the parameters α and d are listed in Table 1. Clearly, the (I = 0, j = 0)
potential is more attractive than the (I = 1, j = 1) potential. Consequently, Eq. (2.1) describes the

I j α d in fm

0 0 0.34+0.03
−0.03 0.45+0.12

−0.10

1 1 0.29+0.05
−0.06 0.16+0.05

−0.02

Table 1: Parameters α and d of the potential of Eq. (2.1) for two static antiquarks Q̄Q̄, in the
presence of two light quarks qq with quantum numbers I and j, as determined in [8]

potential of two heavy antiquarks b̄b̄ in the presence of two light quarks ud, so in other words,
we apply a Born-Oppenheimer approximation [13]. We can use this potential in the Schrödinger
equation to search for either bound states (cf. [5, 7, 9, 12]) or resonances (cf. Sec. 3 and 4).
Solving the Schrödinger equation for (I = 0, j = 0), a bound state with binding energy 90+43

−36 MeV
and quantum numbers I(JP) = 0(1+) has been found [8].

3. The Emergent Wave Method

In this section, we present the emergent wave method, which is a well suited approach to study
phase shifts and resonances. More details can be found, for example, in [11]. First, we consider
the well-known Schrödinger equation(

H0 +V (r)
)

Ψ = EΨ . (3.1)
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We start by splitting the wave function into two parts,

Ψ = Ψ0 +X , (3.2)

where Ψ0 is the incident wave, which solves the free Schrödinger equation H0Ψ0 = EΨ0 and X
indicates the emergent wave. As the next step, we insert Eq. (3.2) into Eq. (3.1) . Using the free
Schrödinger equation to simplify, we obtain:(

H0 +V (r)−E
)

X =−V (r)Ψ0 . (3.3)

Solving this equation for any arbitrary energy E, we can compute the emergent wave X by pro-
viding the corresponding Ψ0 and fixing the appropriate boundary conditions. The asymptotic be-
haviour of X determines the phase shifts, the S matrix and the T matrix. Continuing this problem to
complex energies is possible without difficulties. We find the poles of the S matrix and the T ma-
trix in the complex plane and identify them with a resonance, when located in the second Riemann
sheet at m− iΓ/2, where m is the mass and Γ is the decay width of the resonance.

3.1 Partial Wave Decomposition

The Hamiltonian describing the two heavy antiquarks b̄b̄ at vanishing total momentum is

H = H0 +V (r) =− h̄2

2µ
4+V (r) (3.4)

where µ = M/2 is the reduced mass and M = 5280MeV is the mass of the B meson from the PDG
[14]. We consider all results as energy differences with respect to 2M, so we omit the additive
constant 2M in Eq. (3.4). In the next step, we express the incident plane wave Ψ0 = eik·r as a sum
of spherical waves,

Ψ0 = eik·r = ∑
l
(2l +1)il jl(kr)Pl(k̂ · r̂) , (3.5)

where jl are spherical Bessel functions, Pl are Legendre polynomials and the relation between en-
ergy and momentum is h̄k =

√
2µE. Since the potential V (r) in Eq. (2.1) is spherically symmetric,

we can also expand the emergent wave X in terms of Legendre polynomials Pl ,

X = ∑
l
(2l +1)il

χl(r)
kr

Pl(k̂ · r̂) . (3.6)

Inserting Eq. (3.5) and Eq. (3.6) into Eq. (3.3) leads to a set of ordinary one-dimensional differen-
tial equations for χl ,(

− h̄2

2µ

d2

dr2 +
l(l +1)
2µr2 +V (r)−E

)
χl(r) =−V (r)kr jl(kr) . (3.7)

3.2 Solving the Differential Equations for the Emergent Wave

The potentials V (r), Eq. (2.1), are exponentially screened, i.e. V (r) ≈ 0 for r ≥ R, where
R� d. Consequently, the emergent wave is a superposition of outgoing spherical waves for large
separations r ≥ R and can be expressed by the spherical Hankel functions of first kind h(1)l :

χl(r)
kr

= i tlh
(1)
l (kr). (3.8)
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If we compute the complex prefactors tl , this will lead to the phase shifts. To this end we solve the
ordinary differential equation (3.7) with the corresponding boundary conditions as follows:

• At r = 0: χl(r) ∝ rl+1.

• For r ≥ R: Eq. (3.8).

We emphasize that the boundary condition for r≥R depends on tl . Solving the differential equation
for a given value of the energy E, this boundary condition is only fulfilled for a specific correspond-
ing value of tl . In other words the boundary condition for r ≥ R fixes tl as a function of E.

For the numerical solution of Eq. (3.7), we implement two different and independent ap-
proaches:

(1) A fine uniform discretization of the interval [0,R], which reduces the differential equation to
a large set of linear equations, which can be solved rather efficiently, since the corresponding
matrix is tridiagonal;

(2) A standard 4-th order Runge-Kutta shooting method.

3.3 Phase Shifts, S and T Matrix Poles

We identify tl as an eigenvalue of the T matrix (cf. standard textbooks on quantum mechanics
and scattering, e.g. [15]). Knowing tl we can determine the phase shift δl and also the corresponding
S matrix eigenvalue sl

1 ,
sl ≡ 1+2itl = e2iδl . (3.9)

Note that both the S matrix and the T matrix are analytical in the complex plane and are also
well-defined for complex energies E. Thus, we extend our numerical method to solve the differ-
ential Eq. (3.7) to complex E and detect the S and T matrix poles by scanning the complex plane
(Re(E), Im(E)) and applying Newton’s method to find the roots of 1/tl(E). These poles corre-
spond to complex energies of resonances and must be located in the second Riemann sheet with a
negative imaginary part both for the energy E and the momentum k.

4. Results for the Phase Shifts, S- and T-Matrix Poles and Prediction of Resonances

4.1 Phase Shifts δl for Real Energies E

First, we consider the more attractive channel (I = 0, j = 0) of the b̄b̄ud potential (cf. Sec
2). We compute tl for real energies E and apply Eq. (3.9) to determine the phase shift δl for the
different angular momenta l = 0,1,2,3, . . . . For a resonance, we expect a fast increasing of δl

from 0 to ≈ π which is, however, not clearly found (cf. Fig. 3 (left)). Thus, we have to search
more thoroughly if there exists a resonance or not. We consider the l = 1 channel and search
for a clear resonance making the potential more attractive by increasing the parameter α while d
is kept fixed. We illustrate the phase shifts δ1 in Fig. 3 (right). For α & 0.65 we find a clear
resonance while for α = 0.72 a bound state is formed, i.e. the phase shift starts at π and decreases
monotonically. However, this observation does not allow to make a clear statement for which
values of α a resonance exists or not.

1At large distances r ≥ R, the radial wavefunction is kr[ jl(kr)+ i tlh
(1)
l (kr)] = (kr/2)[h(2)l (kr)+ e2iδl h(1)l (kr)].
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Figure 3: (left): Phase shift δl as a function of the energy E for different angular momenta l =
0,1,2,3,4 for the (I = 0, j = 0) potential (α = 0.34, d = 0.45fm). (right): Phase shift δ1 as
a function of the energy E for different parameters for the potential. For illustration, we vary
parameter α only while fixing d = 0.45fm at the value of the (I = 0, j = 0) potential. Fixing d and
varying α produces comparable results.

4.2 Resonances as Poles of the S and T Matrices for Complex Energies E

Thus, we search directly for resonances as poles of the T matrix eigenvalue tl in the complex
energy plane. For angular momentum l = 1 and the physical (I = 0, j = 0) potential, we clearly
identify a pole which is shown in Fig. 4 (left) plotting t1 as a function of the complex energy E. For
a better understanding of the resonance and its dependence on the potential, we determine the pole
of the T matrix eigenvalue tl for various parameters α . In Fig. 4 (right), we illustrate the location
of the pole for different values of α in the (Re(E), Im(E)) plane. Indeed, starting with α = 0.21
we find poles. Consequently, our prediction for a resonance at α = 0.34 is confirmed. For angular
momenta l 6= 1 as well as for the less attractive channel (I = 1, j = 1) for all l, no pole has been
found.

4.3 Statistical and Systematic Error Analysis

Finally, we perform a detailed statistical and systematic error analysis with regard to the pole of
t1 in the complex plane (Re(E), Im(E)) for angular momentum l = 1. We apply the same analysis
methods as for our study of bound states presented in [7]. We parametrize the lattice QCD data for
the potential V lat(r) with an uncorrelated χ2 minimizing fit with the ansatz of Eq. (2.1), i.e. we
minimize the expression

χ
2 = ∑

r=rmin,...,rmax

(
V (r)−V lat(r)

∆V lat(r)

)2

(4.1)

with respect to α and d defined in Eq. (2.1). ∆V lat(r) denotes the corresponding statistical errors.
To investigate systematic errors, we perform fits for various fit ranges. Besides, we vary the

range of the temporal separation tmin ≤ t ≤ tmax of the correlation function where V lat(r) is read off
and the spatial separation rmin ≤ r≤ rmax denoting the b̄b̄ distance considered in the χ2 minimizing
fit to determine the parameters α and d.
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Figure 4: (left): T matrix eigenvalue t1 as a function of the complex energy E for the (I = 0, j = 0)
potential (α = 0.34, d = 0.45fm). Along the vertical axis we show the norm |t1|, while the phase
arg(tl) corresponds to different colours. (right): Trajectory of the pole of the eigenvalue t1 of the
T matrix in the complex plane (Re(E), Im(E)), corresponding to a variation of parameter. We also
illustrate with a cloud of diamond points the systematic error [7].

The statistical errors are included determining the jackknife errors of the medians of Re(E)
and Im(E). Finally, systematic and statistical uncertainties are added quadratically.

Applying this combined systematic and statistical error analysis, we find a resonance energy
Re(E) = 17+4

−4 MeV and a decay width Γ =−2Im(E) = 112+90
−103 MeV. Studying the symmetries of

the quarks with respect to colour, flavour, spin and their spatial wave function and considering the
Pauli principle we determine the quantum numbers to be I(JP) = 0(1−). The decay product of this
resonance will be two B mesons, so its mass is given by m = 2M+Re(E) = 10576+4

−4 MeV.

5. Conclusion and Outlook

We searched for resonances in the b̄b̄ud system applying lattice QCD potentials for two static
antiquarks in the presence of two light quarks, the Born-Oppenheimer approximation and the emer-
gent wave method. First, we have considered the scattering phase shift for a BB meson pair. Af-
terwards, we continued analytically the S matrix and T matrix to the second Riemann sheet and
searched for poles in the complex plane.

After a solid statistical and systematic analysis, we predict a new resonance with quantum
numbers I(JP)= 0(1−), a resonance mass Re(E)= 17+4

−4 MeV and a decay width Γ= 112+90
−103 MeV.
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