
P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
1
3
1

On the origin of Y(4260) and the JPC = 1−− exotic
mesons

Sachiko Takeuchi∗†
Japan College of Social Work, Kiyose, Tokyo 204-8555, Japan
Research Center for Nuclear Physics (RCNP), Osaka Univ., Ibaraki, Osaka, 567-0047, Japan
RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
E-mail: s.takeuchi@jcsw.ac.jp

Makoto Takizawa
Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
J-PARC Branch, KEK Theory Center, IPNS, KEK, Tokai, Ibaraki, 319-1106, Japan
E-mail: takizawa@ac.shoyaku.ac.jp

The qqss and qqcc JPC = 1−− systems are investigated by a quark hadron hybrid model, where
the 14 relevant two-meson channels are coupled, while the quark degrees of freedom appear in
the short range region. In each of the qqss and qqcc systems, one or more poles have been found.
For the qqcc, a pole with a very narrow width appears very close to the ωχc1 threshold, which is
also close to the DD1 and DD′

1 thresholds. There are two poles in the qqss, both of which have
a rather larger width. We argue that they can be seeds of the observed exotic mesons like the
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1. Introduction

In 2003, Belle collaboration reported that they had found a very narrow peak in the decay of
B± to J/ψπ+π−K±, which is now called X(3872) [2]. It was confirmed also by other types of
reactions [3]. In 2005, BaBar collaboration reported that there was a broad resonance in the initial
state radiation (ISR) process of e+e− collision experiments with the final π+π−J/ψ channel [4].
This resonance, called Y (4260) (or ψ(4260)), has been investigated mainly by ISR also by other
groups [5, 6, 7, 8]. Recently, BESIII reported that they had found Y (4260) in the e+e− collision
without ISR and that the resonance has a lighter mass, 4222.0±3.1 MeV, with a width of 44.1±4.3
MeV [9]. Though the reported values of the masses seem not fully agreed with each other yet, the
existence of Y (4260) seems to be now established. BESIII also reported another broad resonance
at around 4320 MeV [9]. A charged charmoniumlike peak, Zc(3900), was found in the decay
of Y (4260) [8, 10]. Recently LHCb collaboration reported that they had found two resonances,
Pc(4380)+ and Pc(4450)+, which are considered to be uudcc states in the Λb decay [11]. The
hadrons with the cc component seem to have a rich mass spectrum in this energy region.

There are a few candidates of non-qq mesons also among the unflavored mesons [3]. For
example, f0(980) is considered to have a large amount of ssqq component because their decay
branching ratio to the final KK̄ is large even though their masses are very close to the KK̄ threshold.
There are more observed states than those of a simple qq model predicts in the higher energy region,
though many of the observed states are not established yet and are still required to be confirmed.

The multiquark approach can be a strong tool to investigate such exotic states: the properties
of X(3872) can be explained by a 1++ qqcc configuration which couples to the χc1(2P) as well
as the two-meson states [12, 13]. Or, it is found that the color octet q3 in the uudcc configuration
gives rise to a resonance around Σ(∗)

c D∗ threshold, which may contribute to the LHCb pentaquarks,
Pc’s [14].

Here we investigate the JPC=1−− qqQQ systems, employing a quark hadron hybrid model. In
this model, the asymptotic states are two mesons, where the quark degrees of freedom are hidden
in the mesons. In the short-range region, where the two mesons are close to each other, the quark
degrees of freedom appears as the rearrangement occurs from qq-QQ to qQ-Qq systems. These
quark effects can be included in the model as a hadron interaction, which enables us to solve
complicated systems. As we will show later, we have found this model can produce resonance(s)
for the JPC=1−− qqcc or qqss systems. We argue that they can be a seed of the observed exotic
mesons like Y (4260).

2. Model

2.1 qqQQ classification

First we classify the qqQQ JPC = 1−± systems with the orbital (0s)20p configuration by map-
ping them onto two-meson states. The two-meson states we consider here consist of the L = 0 and
1 quark-antiquark mesons: those of 1S0(JPC = 0−+), 3S1(1−−), 1P1(1+−), and 3PJ(J++). Combin-
ing the qq and the QQ states of the above quantum numbers, one can make ten qqQQ (0s)20p 1−−

states and eight 1−+ states as listed in Table 1.
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There are two independent color configurations for the totally color-singlet qqQQ system. One
is the configuration in which both of the qq and QQ are color-singlet, which we denote (qq)1(QQ)1.
The other is the one where both of them are color-octet, (qq)8(QQ)8. The former can be mapped
onto the two-meson states directly, but the latter cannot. It is necessary to apply a quark rearrange-
ment in the color spin orbital space in order to map it onto the two-meson states:

(qq)8(QQ)8 =

√
9
8

T−1(qQ)1(Qq)1 −
√

1
8
(qq)1(QQ)1 , (2.1)

where T is the transfer matrix of the ten (eight) channels in the spin orbital space. The (qQ)1(Qq)1’s
correspond to DD states when Q is taken to be the charm quark. For the 1−− states, they are:

[DD1]−, [DD′
1]+, [D

∗D0]+, [D
∗D1]−, [D

∗D′
1]+, [D

∗D2]+ for relative S wave

DD, [DD∗]−, (D
∗D∗)|S=0,2 for relative P wave (2.2)

where [ĀB]± stands for (ĀB± B̄A)/
√

2. In summary, the qqQQ states can be classified into 20 1−−

two-meson states and 16 1−+ states all together. Note that, suppose one of the (qq)8(QQ)8 states
plays an important role, then it is necessary to take many two-meson channels into account in order
to see the effects. Let us point out also that these 20 1−− two-meson states are independent but
not orthogonal to each other as seen from eq. (2.1). The DD1 state is orthogonal to the DD′

1, for
example. The DD1 and ωχc1 states, for example, however, are independent but not orthogonal to
each other due to the quark degrees of freedom.

2.2 quark hadron hybrid model

We employ a quark Hamiltonian which has the kinetic term and the two-body interaction
terms: the central, the spin-spin, the spin-orbit, and the tensor terms. They are considered to
come from the confinement force and one-gluon exchange force as those in the conventional quark
model. We assume that all the interaction terms of the present model have the color factor, λ ·λ .
Since we only consider the quark degrees of freedom within the orbital (0s)20p configuration, it is
enough to determine the size of the matrix elements of the interaction with respect to the 0s or 0p

Table 1: qqQQ spin flavor orbital classification. S is the meson spin, and Lr is the relative meson orbital
angular momentum. The meson names are those when Q and Q are taken to be the charm quark and
antiquark.

qq QQ S Lr JPC mesons qq ↔ QQ
1S0

1P1 1 0s 1−− η hc1 h1 ηc
3S1

3PJ 1 0s 1−− ω χcJ fJ J/ψ
1S0

3S1 1 0p 1−− η J/ψ ω ηc
1S0

3P1 1 0s 1−+ η χc1 f1 ηc
3S1

1P1 1 0s 1−+ ω hc1 h1 J/ψ
1S0

1S0 0 0p 1−+ η ηc -
3S1

3S1 0,1,2 0p 1−+ ω J/ψ -

2
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configurations; we do not have to assume the potential function shape in the orbital space. So, let
us just consider the matrix elements of the quark Hamiltonian with respect to the 0ℓ qq or qq state:

⟨Hq⟩= ∑
i
(mq + ⟨Kq⟩)+∑

i< j
λi ·λ j(cc

0ℓ+ cσσ
0ℓ σi ·σ j + cLS

0ℓO
LS
i j + cALS

0ℓ OALS
i j + cT

0ℓO
T
i j), (2.3)

where c0ℓ’s are the matrix elements, and O’s are the noncentral operators of the quarks. We obtain
the c’s from the hadron mass spectra assuming that the orbital part of the qq mesons or q3 baryons
can also be approximated by the 0s or 0p configuration of the same size parameters as those in
the above (0s)20p configuration. This assumption is valid when one takes the size parameter to be

bred =
√

x2
0/mred , where x0 is a constant (∼ 0.6 fm1/2) and mred is the reduced mass of the relevant

quarks [14]. The bred between uu, cu, or cc is 0.69, 0.53, or 0.29 fm, respectively.
The matrix elements for the interaction between c and c, cO

0ℓ(cc), can be determined from the
cc meson masses straightforwardly. We use not all the light hadron masses as they are, however, in
order to determine the c’s because some of the light mesons are not regarded as a simple qq meson.

For the ss(1S0) mass, we use the mass of
√

m2
K −m2

π = 476.03 MeV instead of the observed η or

η ′ masses. We take (mω + 64
3 cσσ

0s (uu)) for the uu(1S0) mass with cσσ
0s (uu) = − 1

32(2mΣ∗
c
+mΣc −

3mΛc) = −19.70 MeV. As for the qc or qs interaction, we use the same c’s for the ones between
qc or qs except for the cσσ

0s , which we obtain from the baryon mass spectra: we use cσσ
0s (us) =

− 1
16(mΣ∗−mΣ)=−11.96 MeV. Using − 3

32(2mΞ∗
c
−mΞ′

c
−mΞc)= cσσ

0s (us)+cσσ
0s (uc)+cσσ

0s (sc) and
assuming cσσ

0s (uc)= cσσ
0s (sc), we have cσσ

0s (uc)=−5.47 MeV. Moreover, we assume that D1(2420)
[D′

1(2430)] corresponds to the cq state where the light quark spin with the angular momentum,
jq̄ = sq̄ + ℓ, is 3

2 [ 1
2 ]. Those of qs, we assume that K1(1270) [K1(1400)] corresponds to that of 3

2
[ 1

2 ].
Now let us define the two-meson interaction arising from the quark degrees of freedom, by

taking the matrix elements of the quark Hamiltonian with respect to the the quark configuration,
(qq)1(QQ)1. Because we assume the quark interaction has the color factor, the diagonal part of the
Hamiltonian should be free:⟨

(qq)1(QQ)1(α);(0s)20p
∣∣∣(Hq −E)

∣∣∣(qq)1(QQ)1(α ′);(0s)20p
⟩
= (Mα

1 +Mα
2 +Kα

0ℓ−E)δαα ′

(2.4)
where α is the quantum number of the four-quark state. The Mα

1 and Mα
2 are the mass of each of

the two mesons in the α channel as listed in Table 2. The Kα
0ℓ term comes from the relative meson

kinetic energy, which has the 0s or 0p configuration, and becomes 3
4x2

0
or 5

4x2
0
, respectively.

With the same procedure we have for the DD⟨
(qQ)1(Qq)1(β );(0s)20p

∣∣∣(Hq −E)
∣∣∣(qQ)1(Qq)1(β ′);(0s)20p

⟩
= (Mβ

1 +Mβ
2 +Kβ

0ℓ−E)δββ ′

(2.5)
Nonzero values appear in the off-diagonal part where the rearrangement of quarks occurs, from
which we define the two-meson potential as:⟨

(qq)1(QQ)1(α);(0s)20p
∣∣∣(Hq −E)

∣∣∣(qQ)1(Qq)1(β );(0s)20p
⟩
=Vαβ (E) (2.6)

The potential Vαβ (E) depends on the energy because the overlapping term which proportional to
E survives due to the rearrangement.
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Table 2: Meson masses used for the potential (in MeV). Data are taken from ref. [3].

0−+(1S0) 1−−(3S1) 1+−(1P1) 0++(3P0) 1++(3P1) 2++(3P2)

uu(1S0) ω h1(1170) f0(980) f1(1285) f2(1270)
362.37 782.65 1170 990 1281.9 1275.5
ss(1S0) ϕ(1020) h1(1380) f0(1500) f1(1420) f ′2(1525)
476.03 1019.461 1407 1504 1426.4 1525

ηc J/ψ hc χc0 χc1 χc2

2983.9 3096.900 3525.38 3414.71 3510.67 3556.17
0−(1S0) 1−(3S1) 0+(3P0) 1+( jq̄ = 1

2) 1+( jq̄ = 3
2) 2+(3P2)

K K∗ K∗
0 (1430) K1(1400) K1(1270) K∗

2 (1430)
495.644 891.66 1425 1403 1272 1429

D D∗ D∗
0(2400) D1(2430) D1(2420) D∗

2(2460)
1869.65 2008.56 2318 2427 2423.2 2463.1

So, we have the Hamiltonian for the two meson systems as:

Hαβ
h = (Mα

1 +Mα
2 +Kα)δαβ + |0ℓ⟩Vαβ (E)⟨0ℓ| (2.7)

This Hamiltonian can be used also for the long range region, where the system is free. There
is no interaction among the cc-qq channels, nor among the DD channels. The Hamiltonian has
the interaction of a range of the hadron size, which appears only between the cc-qq and the DD
channels. In this work, we further restrict ourselves to use the channels whose relative orbital
momentum is S-wave: we take the channels where 0ℓ= 0s in eq. (2.7). There are 14 such channels
for the 1−− states out of 20. The above meson interaction becomes a simple gaussian separable
potential, which enables us to solve the many-channel coupled systems rather easily.

Let us remark that we replace the reduced mass in the denominator with that of the real meson
masses in the kinetic term of the above equation, Kα , in order to make the kinematics of the system
realistic. Let us also note that we ignore the kinetic term which operates over the rearrangement
part of the normalization in eq. (2.7). This term produces, e.g., a strong repulsion when the system
has a Pauli-forbidden state(s). In the present work on the qqQQ systems there is no such strong
repulsion, and the term appears only in the off-diagonal channels, which we ignore because it is
rather small.

3. Results and discussion

We employ the complex scaling method to solve the systems [15]. It is easier to employ the
method to search poles in the S-matrix when many channels are coupled. We confirmed existence
of these poles and their energies also by solving the Lippmann Schwinger equation.

In the ccqq 1−− systems, we have found a pole with an energy of 4293.37−0.23i MeV. The
width of this resonance is very small, 0.5 MeV, and the real part of the energy is very close to
the two-meson thresholds: the D+D−

1 threshold, 4292.85 MeV, the ωχc1, 4293.32 MeV, and the

4
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Table 3: The energy and the width of the resonance poles (in MeV). The ccqq 1−− system has one pole
while the ssqq 1−− system has two poles.

system energy width
ccqq 1−− 4293.37 0.46
ssqq 1−− 2160.54 20.08

2288.32 67.86

D+D′−
1 , 4296.65 MeV. Since the resonance is close to the thresholds, the components of this reso-

nance are mostly these three two-meson states. In the short range region, however, the size of both
of the f1J/ψ and f2J/ψ components become comparable to the above three states. Modes which
consist of many two-meson states seem important here, though more investigation is required. The
resonance does not correspond directly to the observed Y (4260), because it requires an additional
attraction to reduce the mass by about 90 MeV. It, however, strongly suggests that this resonance,
or the quark rearrangement, induces the exotic mesons like Y (4260).

In the ssqq 1−− systems, we have found two poles as listed in Table 3. The observed ϕ(2160)
may have a component of the lower one at 2160 MeV, whose component mainly consists of
K∗K1(1270) and (K∗

)8(K1(1270))8; the latter corresponds to the superposition of the ω f0(1500),
f ′2(1525)ϕ , and many other two-meson states. There are no established 1−− resonances which
are close to the higher resonance. It has a large width and consists of many components such as
K∗K1(1400), ω f ′2(1525) and several other states. There is one more state at around 2360− 40i
MeV which appear as an energy eigenstate in the complex scaling method. It, however, seems not
to be a resonance according to the Lippmann Schwinger calculation though the scattering observ-
ables vary rapidly around this energy.

There is a model ambiguities which comes from the meson assignments, or level mixing of
the mesons, in the process of obtaining the matrix elements c’s. The decay widths of some of the
mesons which construct the two-meson states, e.g., the D1 or D′

1 mesons, are large, and should
be included when one performs more realistic calculation. Moreover, it is probably necessary to
include the pion exchange effects in the DD channels. It is also interesting to see the effects from
the coupling to the cc mesons, such as ψ(3S) or ψ(4S), with an annihilation of the light quark pair.

In the present work, we do not actually use the fact that the isospin of the system is 0, when
we derive the potential Vαβ (E). The rearrangement can be done similarly for, e.g. udcc systems.
Let us point out that the above poles can appear even for the charged systems in similar energies
except for the effects of the meson exchange or those of the coupling to the cc or ss state.

4. Summary

In this work we investigate the qqss and qqcc JPC = 1−− systems by employing a quark hadron
hybrid model. We introduce the 14 relevant two-meson channels, whose short range includes the
quark degrees of freedom. For the qqcc, a pole appears just around the ωχc1, DD1, and DD′

1
thresholds with a very narrow width. There are two poles found in the qqss, each of which has
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a rather larger width. The results strongly suggest that the quark degrees of freedom contribute
largely to form the observed exotic mesons like Y (4260).
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6


