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1. Introduction

The equation of state (EoS) is a fundamental quantity of QCD as it describes the thermody-
namic properties of quarks and gluons at equilibrium. It is relevant for a wide spectrum of appli-
cations, including the physics of the early universe, the study of neutron stars, and the description
of heavy-ion collisions. Tremendous progress has been made over the past decade in the deter-
mination of the EoS at zero chemical potential for temperatures T ≈ 500MeV and below, using
lattice field theory methods [1, 2, 3]. Lattice QCD is indeed the only known framework that al-
lows for a first-principles, non-perturbative computation of the EoS. On the other hand, all current
state of the art determinations rely on (some variant of) the integral method [4]. This approach is
very challenging from the computational point of view as one needs to accommodate within the
same simulation the physics at zero-temperature and at the temperatures of interest. Due to this
limitation, only very recently some first exploratory study touched temperatures T ≈ 1−2GeV [5].

In the past few years a new framework has been proposed for the determination of the EoS
using lattice QCD. The idea is to consider QCD in a moving reference frame [6, 7, 8].1 Within this
framework one is able to completely decouple simulations at different temperatures, which makes
computationally feasible to reach high-temperatures while having all uncertainties under control.
The method has been very successfully applied to the SU(3) Yang-Mills theory [11, 12, 13, 14, 15].
The study of refs. [12, 14, 15], in particular, obtained a determination of the EoS over two orders
of magnitude in the temperature with half a per-cent accuracy. Following these encouraging results
in the pure gauge sector, our goal is to obtain a similar determination in full QCD.

A first exploratory study in this direction was presented in [16], where some first numerical
experience with the method was described. In this contribution we present some preliminary results
towards a systematic determination of the EoS of Nf = 3 QCD in the completely unexplored regime
of temperatures: T ≈ 3−80GeV. This determination is of great interest for several reasons. First
of all, it fills the gap in our knowledge of the EoS between temperatures of the order of the typical
QCD scales, up to the electro-weak scale. This information is very relevant for understanding
the physics of the early universe. Secondly, the results will provide an important, solid test of
perturbation theory in the high-temperature regime. In this range of temperatures perturbation
theory is commonly used to approximate the EoS. On the other hand, the results in the SU(3)
Yang-Mills theory of [12, 14, 15], clearly point to the fact that this might not be as accurate as it
is typically assumed. It is thus compelling to assess this issue in the most relevant case of QCD.
Finally, our computation intends to be the first determination of the EoS which systematically
employs the Wilson rather than the staggered formulation of lattice QCD. Proving that precise
results using Wilson-quarks are feasible with today’s computational resources opens the way to
further studies using this formulation. This is particularly relevant in view of consolidating the
current state of the art determinations at lower temperatures.

The outline of this contribution is the following. In the next section we briefly review the
framework of lattice QCD in a moving frame, and recall how the EoS can be computed in terms of
simple expectation values of the energy-momentum tensor (EMT). In Sect. 3, we discuss our lattice
set-up and give an analysis of the O(a)-improvement of the relevant expectation values of EMT.
In Sect. 4, we present the lines of constant physics we plan to follow for our high-temperature

1For other interesting approaches we recommend the reader to refs. [9, 10].
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determination of the EoS, and discuss some preliminary results for the bare expectation values of
the EMT. We finally conclude with an outlook on future work.

2. Thermodynamics from a moving frame

Considering a thermal quantum field theory in a moving frame brings a new perspective in
studying thermodynamics. This framework provides us indeed with new relations to compute
thermodynamic potentials [6, 7, 8]. To define a thermal quantum field theory in a moving frame
one must impose shifted boundary conditions (SBC) on the fields integrated over in the Euclidean
path-integral. In the case of lattice QCD this amounts to requiring:

Uµ(L0,~x) =Uµ(0,~x−L0
~ξ ), ψ(L0,~x) =−ψ(0,~x−L0

~ξ ), ψ(L0,~x) =−ψ(0,~x−L0
~ξ ). (2.1)

In these equations, L0 denotes the physical extent of the lattice in the temporal direction, while ~ξ
is the so-called shift vector corresponding to the Euclidean velocity of the moving frame; note that
in the rest frame, ~ξ = 0, the usual thermal/periodic boundary conditions are recovered. We then
consider periodic boundary conditions for all fields in the three spatial dimensions of extent L.

The entropy density of the system, s(T ), is the central quantity of interest. Once s(T ) is known,
the other thermodynamic potentials including the pressure p(T ) and the energy density ε(T ) can be
inferred from standard thermodynamic identities. In a moving reference frame the entropy density
is related to the momentum density of the system by [8]:

s(T )
T 3 =−

L4
0(1+

~ξ 2)3

ξk
〈T R

0k〉ξ , T−1 = L0

√
1+~ξ 2, (2.2)

where in this equation 〈·〉ξ denotes the lattice path-integral expectation value in the presence of
SBC, and T R

0k is the momentum k-component of the renormalized EMT. Eq. (2.2) is the natural tran-
scription to a quantum field theory of the corresponding classical relativistic relation (cf. ref. [17]).
In the following we discuss some of its relevant features when studied on the lattice.

3. The energy-momentum tensor on the lattice

3.1 General considerations

On the lattice the EMT requires renormalization due to the explicit breaking of Poincaré sym-
metry by the regularization. The problem of defining a properly renormalized EMT which respects,
up to discretization errors, the correct Ward identities, was first addressed in a series of pioneering
papers [18, 19, 20]. Focusing on the momentum-components of the EMT, the analysis of these
references shows that properly renormalized fields can be defined as:

T R
0k(x) = ZF(g0)T F

0k(x)+ZG(g0)T G
0k(x), (3.1)

where T F
0k and T G

0k are the bare fermionic and gluonic components of the EMT, respectively. The
renormalization constants ZF and ZG appearing in this equation are renormalization scale inde-
pendent, and thus only functions of the bare gauge coupling g0. They depend on the specific
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discretization of the QCD action and of the bare fields T F
0k and T G

0k , and they are fixed by impos-
ing the validity of some continuum Ward identity at finite lattice spacing; only in this way we are
guaranteed that in the continuum limit T R

0k will converge to the generator of spatial translations.
For our study we employ (non-perturbatively) O(a)-improved Wilson-fermions and consider the
Wilson gauge action [21]. For the bare EMT we take the discretized form given in eqs. (4) and (5)
of ref. [16].

We have recently completed a 1-loop computation of the renormalization constants ZF and ZG

within the framework of SBC. This calculation provides us with useful insight on how to choose
practical renormalization conditions to fix ZF and ZG also non-perturbatively. In addition, the
results give us valuable perturbative information on discretization effects: both to determine im-
provement coefficients (cf. Sect. 3.2), as well as to perturbatively subtract lattice artefacts from our
non-perturbative determinations of the Z-factors. The details of this computation will be presented
elsewhere [22]. Earlier computations of some of these renormalization factors using different set-
ups can be found in refs. [18, 19, 20, 23, 24].

3.2 O(a)-improvement

Wilson-fermions are known to be affected by discretization errors of O(a). If one aims at
precise continuum extrapolations it is hence convenient to systematically remove them following
Symanzik improvement programme [25, 26]. In short, this consists in adding irrelevant O(a)-
counterterms with the proper symmetry transformations to the lattice action and fields, and to tune
their coefficients to cancel the unwanted O(a)-effects in on-shell quantities. Given the fact that our
action is O(a)-improved, improved expectation values of the EMT are obtained by improving the
EMT itself.

In this section we focus on the specific case of improving the expectation value 〈T R
0k〉ξ ; a more

general discussion on the improvement of the EMT will be presented in [22]. We then begin by
considering the situation where the quarks are massless. The O(a)-counterterms we need to add
to T R

0k are given in principle by all mass dimension 5 operators which share the same lattice sym-
metries of these fields. Symmetry transformations and the field equations of motion can however
be used to reduce the actual number of fields we need to consider in a specific (on-shell) expecta-
tion value [27]. Following the discussion of ref. [28], it is possible to show that an O(a)-improved
definition of 〈T R

0k〉ξ can be obtained as:

〈T R
I,0k〉ξ = ZG(g0)〈T G

0k〉ξ +ZF(g0)
{
〈T F

0k〉ξ +a〈δT F
0k〉ξ

}
, (3.2)

where for the fields δT F
0k we take:

δT F
0k(x) = cF

T (g0)
1
8 ψ(x)

[
σ0ρ F̂kρ(x)+σkρ F̂0ρ(x)

]
ψ(x). (3.3)

In this equation, F̂µν denotes the (traceless) clover discretization of the field strength tensor (see
e.g. ref. [14] for its definition), while cF

T (g0) is an improvement coefficient which must be tuned to
remove the O(a)-effects from eq. (3.2).

When considering the case of massive quarks more O(a)-counterterms need to be added to
the EMT. Here we discuss only the case of mass-degenerate quarks and leave the details of the
non-degenerate case to [22]. We also assume that the bare gauge coupling g0 is properly improved,
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and so the subtracted bare quark-masses, mq = m0−mcr(g0), with m0 the bare quark mass and mcr

its critical value (see ref. [27] for a discussion about this point). In this situation, an O(a)-improved
definition of 〈T R

0k〉ξ in the presence of mass-degenerate quarks is given by:

〈T R
I,0k〉ξ = ZG(g̃0)〈T G

I,0k〉ξ +ZF(g̃0)〈T F
I,0k〉ξ , (3.4)

where g̃0 is the improved bare coupling [27], and

T G
I,0k(x) =

(
1+bG

T (g0)amq
)
T G

0k(x), T F
I,0k(x) =

(
1+bF

T (g0)amq
){

T F
0k(x)+aδT F

0k(x)
}
. (3.5)

By a proper tuning of the b-coefficients, one can eliminate all O(amq) discretization errors stem-
ming from the EMT. It is easy to show that at tree-level in perturbation theory this is achieved by
setting bG

T = 0 and bF
T = 1 [22].

The above discussion shows that, in general, in order to improve the expectation value 〈T R
I,0k〉ξ

we need to determine the improvement coefficients: cF
T , bF

T , and bG
T . However, in the high-

temperature regime of Nf = 3 QCD, none of these coefficients is expected to be very relevant.
At temperatures T � 100MeV, chiral symmetry is not broken for vanishing quark-masses; the
only sources of chiral symmetry breaking at these temperatures are the quark-masses themselves.
At high-temperature the chirally non-invariant O(a)-counterterm (3.3) hence contributes to 〈T R

I,0k〉ξ
with O(amq)-effects; all discretization errors in 〈T R

I,0k〉ξ are thus of O(amq). Now, in order to keep
discretization effects under control we must always be in the situation where aT � 1, which implies
that: amq�mq/T . Consequently, in Nf = 3 QCD, where only the up, down, and strange quarks are
considered, in the range of temperatures of interest, T ≈ 3−80GeV, the O(amq)-effects affecting
〈T R

I,0k〉ξ are expected to be well-below the per-cent level. In addition, small values of the lattice
spacing, a� T−1, correspond to relatively small values for the bare coupling g0. Perturbative esti-
mates for the improvement coefficients cF

T , bF
T , and bG

T , are thus expected to be good enough to have
these small O(amq) effects under control. We plan to corroborate all these expectations by study-
ing the size of the relevant O(a)-counterterms non-perturbatively, so to be able to quantitatively
estimate their effect in our results.

4. Simulation strategy and results

In this section we give some details on the lines of constant physics (LCPs) that we plan to
follow for the determination of the entropy density in the high-temperature range, T ≈ 3−80GeV.
The aim is to obtain a final precision on the continuum entropy density of about 1% over the whole
temperature range. The first step is to find values of the bare coupling g0 and of the temporal
resolution L0/a which correspond to a good set of constant physical temperatures to cover the
desired range. To this end, we consider the LCPs defined by the ALPHA collaboration in terms
of running couplings [29, 30, 31, 32, 33] (see ref. [34] for a recent review). Using in particular
the results of refs. [32, 33] we are able to fix the bare parameters for 8 values of the temperature,
where for each of these we can have up to 4 lattice spacings, corresponding to the resolutions:
L0/a = 6,8,10,12. As for the choice of shift vector we take ~ξ = (1,0,0). Perturbative studies
suggest that for these values of L0/a, this should result in small discretization errors for the entropy
(cf. ref. [16]). Given this choice and the results of ref. [31], we can infer from the values of the
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renormalized couplings used to fix the temperatures the physical value of the latter. Table 1 collects
these results together with the bare parameters of the ensembles that we are currently generating.
To conclude with the lattice geometry, we are considering for all ensembles a spatial resolution
of L/a = 288. This translates into having T L ≈ 34− 17 as we go from L0/a = 6− 12. Since
finite volume effects are exponentially small in T L [8], we expect these effects to be well-below
our target precision. We are currently conducting a systematic study to confirm that indeed finite
volume effects in the relevant matrix elements of the EMT are negligible within our statistical
precision.

T (GeV) L0/a β 〈T G
0k〉ξ/T 4 〈T F

0k〉ξ/T 4 Nms

2.8 6 6.2735 −2.361(19) −5.8667(94) 100
2.8 8 6.4680 −2.421(33) −5.700(18) 250
4.6 6 6.6050 −2.462(19) −5.9477(80) 100
7.5 6 6.9433 −2.562(18) −6.0265(95) 100
11.9 6 7.2618 in production 20
19.2 6 7.5909 −2.650(25) −6.1757(85) 100
30.5 6 7.9091 in production 25
47.8 6 8.2170 −2.707(18) −6.264(11) 100
76.5 6 8.5403 −2.806(23) −6.305(10) 100
76.5 8 8.7325 −2.784(40) −6.132(13) 250

Table 1: Values of the temperatures we are considering and corresponding values of β = 6/g2
0 and L0/a of

the ensembles that we are currently generating. All simulations have L/a = 288. Our preliminary results for
the bare gluonic and fermionic matrix elements of the EMT are also given, together with the total number of
(independent) measurements we collected. We do not observe any autocorrelation between measurements
on successive trajectories of length 2 MDUs.

For our choice of lattice action refs. [32, 33] give results for the critical value of the quark-
masses, mcr(g0). We employ these values and conveniently fix the bare quark masses m0 = mcr(g0)

in our simulations. Up to discretization errors our 3-flavours of quarks can therefore be considered
massless. Given the fact that physical quark-mass effects in the entropy are of O(m2

q/T 2), we expect
that in our range of temperatures the difference with having physical values for the quark-masses
is well-below our target accuracy. However, we plan to carefully study this issue by investigating
the mass dependence of our results; this also in relation to estimate the size of the O(amq) errors
one would have for physical values of mq.

In table 1 we listed our preliminary results for the bare matrix elements, 〈T G
0k〉ξ , 〈T F

0k〉ξ , for
the ensembles we are currently considering. Given the large lattice volume we are simulating we
obtain very precise results with only a few hundred measurements. At fixed L0/a and number of
measurements the precision we reach does not seem to depend too strongly on the temperature. For
L0/a = 6, we typically reach a precision on the gluonic matrix element of ≈ 0.6−0.9%, while for
the fermionic contribution we have ≈ 0.15% accuracy at all temperatures. When changing L0/a at
fixed β , we (roughly) observe the expected scaling of the relative error with (L0/a)4. Finally, we
may gain some rough idea on cutoff effects in the entropy density at the highest temperatures by
taking for the renormalization factors ZF ,ZG their 1-loop values [22]. If we consider in particular
the ratio between the entropy density obtained for L0/a = 6 and 8 at Tpt = 76.5GeV, we find:
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[s(Tpt,L0/a = 8)/s(Tpt,L0/a = 6)]|Z1−loop
F,G

≈ 0.98, which means that discretization errors are of the

order of 2%. Bearing in mind that the non-perturbative Z-factors will also carry their cutoff effects
and statistical errors, safe continuum limit extrapolations with 1% accuracy seem at hand.

5. Conclusions and outlook

In this contribution we presented some preliminary results towards a per-cent accuracy deter-
mination of the EoS of Nf = 3 QCD in the range of temperatures: T ≈ 3− 80GeV. The results
we obtain for the bare matrix elements of the EMT are very encouraging: we can reach very high-
precision with modest computational resources. In addition, the set-up allows us to have systematic
effects under control, including both finite-volume and discretization effects. In order to better un-
derstand the nature and size of the latter we have studied in some detail the O(a)-improvement of the
relevant expectation values of the EMT. The next mandatory step at this point is the determination
of the renormalization constants ZF , ZG. We already devised a set of non-perturbative renormaliza-
tion conditions and tested their viability to 1-loop order in lattice perturbation theory [22]. Their
non-perturbative determination is on going.
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