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1. Introduction

Forward particle production at semi-hard transverse momenta in high energy proton-proton
and proton-nucleus collisions can provide valuable information about the nuclear wavefunction at
small x in a domain where the strong coupling is small enough for a perturbative treatment to be
applicable but where gluon occupation numbers are high and non-linear effects such as saturation
are expected to be important. To extract as much information as possible from measurements
performed at RHIC and the LHC, accurate theoretical predictions are important. In the recent years
several works have been devoted to push the Color Glass Condensate (CGC) effective theory [1],
which is the natural framework to deal with such processes within perturbative QCD, to NLO
accuracy. This includes the computation of NLO corrections to the non-linear equations governing
the evolution of scattering amplitudes at high energy (the B-JIMWLK hierarchy of equations [2,
3, 4, 5, 6, 7, 8] and its mean field approximation, the Balitsky-Kovchegov equation [2, 9]) as
well as to the impact factors describing the coupling between the dilute projectile and the dense
target’s gluon distribution. However the first studies implementing these corrections found that
they can lead to unphysical results. In the case of the BK equation, it was found that the NLO
corrections [10, 11, 12] make the evolution unstable [13, 14] because of large collinear logarithms
which need to be resummed to all orders [15, 16, 17]. This resummation indeed leads to stable
and physical results [18]. Regarding impact factors, the first NLO calculations of forward particle
production in proton-nucleus collisions [19, 20, 21, 22, 23, 24, 25] obtained cross sections which
suddenly turn negative when the transverse momentum of the produced hadron becomes of the
order of a few GeV. This is a particularly surprising result since the formalism is expected to apply
in this semi-hard region. Here we will summarize the recent efforts to understand and solve this
issue [25, 26, 27].

2. Forward particle production at leading and next-to-leading order

Let us first summarize the basic formulas that will be useful in the following sections. Since
we consider particle production at forward rapidities, we work in the so-called “hybrid factor-
ization” [28] where the projectile proton, being probed at rather large x values, can be described
by usual collinear parton distribution functions (PDFs). The target nucleus, on the other hand,
is probed at very small x values and is described in terms of “unintegrated” gluon distributions
(UGDs) encoding the information about gluon densities as a function of x and transverse momen-
tum. The non-linear evolution of the UGD as a function of x is governed by the Balitsky-Kovchegov
(BK) equation [2, 9].

2.1 Leading order

In the hybrid factorization, the LO quark multiplicity reads

dNLO

d2kkk dη
=

xpq(xp)

(2π)2 S (kkk,Xg) , (2.1)

where kkk is the transverse momentum of the produced quark, η its rapidity, q is the collinear quark
distribution in the projectile proton and S is the “unintegrated gluon distribution” in the target
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nucleus. Note that for simplicity, throughout this work we will only consider the quark channel
q→ q as it exhibits the same issues as the total multiplicity. In addition we do not consider the
fragmentation of quarks into hadrons, which would be necessary for phenomenological studies but
is not needed here. The longitudinal momentum fractions xp and Xg probed respectively in the
proton and nucleus are

xp =
k⊥√

s
eη , Xg =

k⊥√
s

e−η =
k2
⊥

xps
, (2.2)

where k⊥ = |kkk| and
√

s is the center of mass energy. From these expressions we see that at high
energy and forward rapidity we are in the regime Xg� xp < 1. The unintegrated gluon distribution
S in (2.1) is defined as the Fourier transform of the S-matrix describing the elastic scattering
between a small color dipole and the nucleus:

S (kkk,X) =
∫

d2rrr e−ikkk·rrrS(rrr,X), (2.3)

with
S(xxx,yyy;X) =

1
Nc

〈
tr
[
V (xxx)V †(yyy)

]〉
X , (2.4)

where V is Wilson line in the color field of the target in the fundamental (since we are considering
the scattering of a quark) representation:

V (xxx) = P
[

ig
∫

dx+A−a (x
+,xxx)ta

]
. (2.5)

Here g is the strong coupling, x+ the light-cone time of the quark and xxx its transverse coordinate,
A−a is the relevant component of the color field of the target nucleus and ta are the generators of
SU(Nc) in the fundamental representation.

Since we work in the small Xg limit, we need to resum to all orders contributions enhanced
by powers of ᾱsYg, with ᾱs ≡ αsNc/π and Yg ≡ ln(1/Xg). These contributions are generated by
the high energy evolution and correspond to the successive emission of soft gluons with strongly
ordered longitudinal momenta. To leading order in pQCD and in the mean field approximation
suitable for a dense target and a large number of colors, the high energy evolution of S is governed
by the Balitsky-Kovchegov (BK) equation [2, 9]:

X
∂

∂X
S(xxx,yyy;X) =

ᾱs

2π

∫
d2zzz

(xxx− yyy)2

(xxx− zzz)2(zzz− yyy)2

[
S(xxx,zzz;X)S(zzz,yyy;X)−S(xxx,yyy;X)

]
, (2.6)

where (xxx,yyy) are the coordinates of the parent dipole which scatters off the target and zzz is the
transverse coordinate of the soft gluon emitted in one step of the evolution. Starting from an initial
condition, for example the McLerran-Venugopalan (MV) model [29, 30], formulated at a given X0,
it is then possible to evolve S to lower values of X .

2.2 Next-to-leading order

When going to next-to-leading order, one should include the contributions suppressed by an
additional power of αs which is not enhanced by an Yg factor. As mentioned in the introduction,
there are two sources of such contributions: the NLO corrections to the high energy BK evolution,
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which are process-independent, and the ones to the impact factor, or hard part, of the process. The
impact factor describes the scattering in the absence of any high energy evolution, i.e. at leading
order it corresponds to the scattering of a bare quark off an unevolved target with X = X0. At
next-to-leading order one has to include contributions where the quark emits a gluon, and thus to
consider the scattering of a quark-gluon system off the nucleus. However, only the case where
this additional gluon is relatively hard should be considered to be part of the NLO corrections.
Indeed, these are the contributions not enhanced by a power of Yg and thus not already included
in the LO expression (2.1) via the high energy evolution. Instead of doing this explicit separation
between leading and next-to-leading order contributions, as was done in [19, 20] where the NLO
impact factor for single inclusive particle production was computed, we will rather first consider an
“unsubtracted” expression for the NLO quark multiplicity [31] which mixes both types of contribu-
tions. The reason for this and the relation with the formulas obtained in [19, 20] will be discussed
in Sec. 3. Following [31], the NLO quark multiplicity can be written as

dNNLO

d2kkk dη
=

xpq(xp)

(2π)2 S (kkk,X0)+
1

4π

∫ 1−Xg/X0

0
dξ

1+ξ 2

1−ξ

×
[

Θ(ξ − xp)
xp

ξ
q
(

xp

ξ

)(
2CF

Nc
I (kkk,ξ ,X(ξ ))+J (kkk,ξ ,X(ξ ))

)
− xpq(xp)

(
2CF

Nc
Iv(kkk,ξ ,X(ξ ))+Jv(kkk,ξ ,X(ξ ))

)]
, (2.7)

with the integrals

I (kkk,ξ ,X(ξ )) = ᾱs

∫ d2qqq
(2π)2

[
kkk−qqq

(kkk−qqq)2 −
kkk−ξ qqq

(kkk−ξ qqq)2

]2

S (qqq,X(ξ )), (2.8)

Iv(kkk,ξ ,X(ξ )) = ᾱs

∫ d2qqq
(2π)2

[
kkk−qqq

(kkk−qqq)2 −
ξ kkk−qqq

(ξ kkk−qqq)2

]2

S (kkk,X(ξ )), (2.9)

J (kkk,ξ ,X(ξ )) = ᾱs

∫ d2qqq
(2π)2 S (qqq,X(ξ ))

[
2(kkk−ξ qqq)·(kkk−qqq)
(kkk−ξ qqq)2(kkk−qqq)2

−
∫ d2 `̀̀

(2π)2
2(kkk−ξ qqq)·(kkk− `̀̀)

(kkk−ξ qqq)2(kkk− `̀̀)2 S (`̀̀,X(ξ ))

]
, (2.10)

Jv(kkk,ξ ,X(ξ )) = ᾱs

∫ d2qqq
(2π)2 S (kkk,X(ξ ))

[
2(ξ kkk−qqq)·(kkk−qqq)
(ξ kkk−qqq)2(kkk−qqq)2

−
∫ d2 `̀̀

(2π)2
2(ξ kkk−qqq)·(`̀̀−qqq)
(ξ kkk−qqq)2(`̀̀−qqq)2 S (`̀̀,X(ξ ))

]
. (2.11)

In these expressions, 1− ξ is the longitudinal momentum fraction of the incoming quark taken
by the primary gluon, i.e. the limit ξ → 1 corresponds to a soft gluon. In this “unsubtracted”
formulation, there is no explicit separation between the LO and NLO contributions: the first term
in the right hand side of (2.7) corresponds to the tree-level result without high energy evolution,
thus S is evaluated at the initial condition X0. The second term contains both the high energy
evolution and the pure αs corrections to the impact factor. In particular, the second line in (2.7)
contains the real contributions, which are thus weighted by the quark distribution evaluated at
xp/ξ , while the third line contains the virtual ones, weighted by q(xp). Both real and virtual

3
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contributions can be written as the sum of a term proportional to the CF color factor (namely I or
Iv) and a term proportional to Nc (J or Jv). The S-matrices in these terms are evaluated at the
rapidity scale X(ξ ). This scale depends on ξ since the emission of a primary gluon with a rapidity
y = ln(1/(1− ξ )) only leaves an interval Yg− y = ln((1− ξ )/Xg) for the high energy evolution.
Therefore we write

X(ξ ) =
Xg

1−ξ
=

k2
⊥

xps(1−ξ )
. (2.12)

This expression is correct as long as k⊥ & Qs(X), where Qs(X) is the target saturation scale (see
the discussion in [31]). This is indeed the kinematics we are interested in here, since it corresponds
to the region where the results obtained in [21] become unphysical. Note that the upper limit on
the ξ integral in (2.7) enforces the restriction X(ξ ) ≤ X0, with X0 the initial condition for the BK
evolution.

In (2.7), the high energy evolution is contained in the terms proportional to Nc (which also
contain a part of the NLO corrections). Indeed, it is easy to check that the terms proportional to
CF vanish in the soft gluon limit ξ → 1, therefore the integral over ξ in these terms do not produce
a large logarithm of X0/Xg. The CF terms, however, contain collinear divergences (at qqq = kkk and
qqq = kkk/ξ in the real term and at qqq = kkk and qqq = ξ kkk in the virtual term) which can be absorbed into
the DGLAP evolution of quark distributions and fragmentation functions. This is done in [19, 20]
using dimensional regularization, and one should then replace I and Iv with the respective finite
expressions:

I fin(kkk,ξ ,X(ξ )) = ᾱs

∫ d2rrr
4π

S(rrr,X(ξ )) ln
c2

0
rrr2µ2

(
e−ikkk·rrr +

1
ξ 2 e

−i kkk
ξ
·rrr
)

−2ᾱs

∫ d2qqq
(2π)2

(kkk−ξ qqq) · (kkk−qqq)
(kkk−ξ qqq)2(kkk−qqq)2 S (qqq,X(ξ )), (2.13)

I fin
v (kkk,ξ ,X(ξ )) = ᾱs

[
ln

kkk2

µ2 + ln(1−ξ )2

]
S (kkk,X(ξ ))

2π
, (2.14)

where µ is the factorization scale and c0 = 2e−γE .

3. Unsubtracted, subtracted and CXY expressions

As written in (2.7), the expression for the NLO multiplicity is not an explicit sum of LO and
NLO contributions. Furthermore, it is non-local in rapidity since the S-matrices in the last two
lines of this expression are evaluated at the floating scale X(ξ ). This is in contrast to the original
expression by Chirilli, Xiao, and Yuan (CXY) [19, 20], in which the LO and NLO contributions
were separated and where the S-matrices were all evaluated at the LO value Xg. We will now detail
the manipulations and approximations that relate these two formulations.

As explained in the previous section, the “Nc-terms” involving J and Jv in (2.7) contain both
the LL high energy evolution and the fixed order NLO corrections proportional to Nc. Therefore we
will first consider the sum of the leading order term and the Nc-terms from the NLO contributions.
On the other hand, the “CF-terms” involving I and Iv in (2.7) are not related to the high energy
evolution and are thus pure NLO corrections that will be added at the end.

4
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Let us first introduce simplified notations. We can rewrite the sum of LO and Nc NLO contri-
butions in (2.7) as

dNLO+Nc

d2kkk dη
=

xpq(xp)

(2π)2 S (kkk,X0)+
∫ 1−Xg/X0

0

dξ

1−ξ
K (kkk,ξ ,X(ξ ))≡ dNIC

d2kkk dη
+

dNNc,Unsub

d2kkk dη
, (3.1)

where we have defined

K =
1

4π
(1+ξ

2)

[
Θ(ξ − xp)

xp

ξ
q
(

xp

ξ

)
J (kkk,ξ ,X(ξ ))− xpq(xp)Jv(kkk,ξ ,X(ξ ))

]
. (3.2)

The first term in the right hand side of (3.1) is the tree-level contribution without high energy evo-
lution (i.e. the initial condition, or IC), and the “Unsub” superscript in the second term stands for
“unsubtracted”. As explained previously, this last term contains the emission of a first primary
gluon with arbitrary kinematics, plus any number of further emissions treated in the eikonal ap-
proximation. Therefore, in the limit where the primary gluon is soft (which corresponds to ξ → 1)
we should recover the LO result (2.1). Indeed, this can be checked easily by using the integral
representation of the BK equation in momentum space:

S (kkk,Xg) = S (kkk,X0)+2π

∫ X0

Xg

dX
X

[
J (kkk,ξ = 1,X)−Jv(kkk,ξ = 1,X)

]
. (3.3)

This allows us to rewrite (3.1) in the following way:

dNLO+Nc

d2kkk dη
=

xpq(xp)

(2π)2 S (kkk,Xg)+
∫ 1−Xg/X0

0

dξ

1−ξ

[
K (kkk,ξ ,X(ξ ))−K (kkk,ξ = 1,X(ξ ))

]
≡ dNLO

d2kkk dη
+

dNNc,Sub

d2kkk dη
. (3.4)

This last expression, where the “Sub” superscript stands for “subtracted”, is an explicit sum of the
LO contribution (2.1) and a fixed order NLO correction which develops no small−Xg logarithm
since the integrand is vanishing in the limit ξ → 1. Eq. (3.4) might seem more natural than (3.1)
from a perturbative expansion point of view, however because it involves adding and subtracting a
large contribution one can expect it to be less stable in numerical evaluations. This is confirmed in
Fig. 1, where the multiplicity and NLO/LO ratio are shown as a function of transverse momentum
using either the “unsubtracted” or “subtracted” formulations: at large transverse momentum the
later one shows small oscillations due to numerical inaccuracies.

We see in Fig. 1 that the NLO multiplicity using either (3.1) or (3.4) is positive even at large
transverse momentum, contrary to the results obtained in [21] using the “CXY” expressions pre-
sented in [19, 20]. To arrive at the “CXY” expressions, we need to make some approximations
in (3.4). The first one is to replace the rapidity argument of the S-matrices in the second term by
the LO value Xg. The second one is to neglect Xg/X0� 1 in the upper limit of the ξ integral and
therefore to replace this limit by 1. We thus arrive at

dNLO+Nc

d2kkk dη

∣∣∣∣
CXY

=
xpq(xp)

(2π)2 S (kkk,Xg)+
∫ 1

0

dξ

1−ξ

[
K (kkk,ξ ,Xg)−K (kkk,ξ = 1,Xg)

]
≡ dNLO

d2kkk dη
+

dNNc,Sub

d2kkk dη

∣∣∣∣
CXY

, (3.5)
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Figure 1: NLO quark channel multiplicity at fixed coupling for
√

s = 500 GeV and a rapidity y = 3.2, using
the unsubtracted (3.1), subtracted (3.4) and CXY (3.5) formulations. On the left the multiplicity and on the
right the NLO/LO ratio. Figure from [26].

which is now equivalent to the formulas presented in [19, 20]. These two approximations, which
make (3.5) no longer equivalent to (3.1) and (3.4), are in principle justified at NLO accuracy
since the second term in (3.4) is a pure αs correction. However we recall that the equivalence
between (3.1) and (3.4) relied on a fine cancellation between large contributions. By using the
CXY approximation this cancellation is no longer exact and the negative contribution proportional
to K (kkk,ξ = 1,Xg) becomes too large in magnitude and overcompensates for the LO piece in
S (kkk,Xg), leading to negative results at large k⊥, as shown in Fig. 1. We thus conclude that to
obtain physical results it is necessary to keep the non-local formulation.

4. Running coupling

4.1 Mixed and coordinate space formulations

In all the expressions written in the previous sections we have implicitly considered the cou-
pling αs to be fixed. However the running of the coupling is an important effect which has to be
taken into account for realistic phenomenological studies. This leads to an additional complica-
tion in the present case: the BK equation is most conveniently written and solved in coordinate
space while the multiplicity is written in momentum space. In particular, some coordinate space
prescriptions commonly used when solving the BK equation are the smallest dipole and Balit-
sky’s [32] prescriptions. On the other hand, for the explicit αs factors appearing in the multiplicity,
the most natural choice at semi-hard transverse momenta k⊥ & Qs(Xg) is simply ᾱs(k⊥). If we
mix these different couplings in the calculation, some equalities written in the previous sections are
no longer true because they relied on the momentum representation (3.3) of the BK equation. In
particular, (3.1) will no longer reduce to the correct LO result (2.1) in the eikonal limit ξ → 1, with
a mismatch reaching up to 30% [26]. Another consequence is that the “unsubtracted” (3.1) and
“subtracted” (3.4) expressions are not equivalent anymore, with the later one becoming negative at
large transverse momentum due to an oversubtraction (see Fig. 2 (L)). Therefore we are left with
an ambiguity: either use (3.1) which leads to physical results but does not have the proper LO limit,
or use (3.4) which reduces to the correct LO result but becomes negative at large k⊥.

6
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Figure 2: NLO/LO ratio for the quark channel multiplicity with running coupling for
√

s = 500 GeV and
a rapidity y = 3.2, using the unsubtracted (3.1), subtracted (3.4) and CXY (3.5) formulations. Left: Mixed
representation with a coordinate space running coupling used when solving the BK equation and a momen-
tum space running coupling for the impact factor. Right: Results obtained when using a coordinate space
running coupling both when solving the BK equation and in the impact factor. Figure from [26].

An attempt to avoid this ambiguity was made in [26] by working fully in coordinate space, and
performing the Fourier transform of the multiplicity in momentum space at the very end of the cal-
culation. Such an approach allows to use the same coordinate space running coupling everywhere
in the calculation. For this we can write J and Jv as the following Fourier transforms:

J (kkk,ξ ,X(ξ )) =
∫

d2rrr e−ikkk·rrrJ(rrr,ξ ,X(ξ ))

≡
∫

d2rrr e−ikkk·rrr
∫ d2xxx

(2π)2 ᾱs
2xxx·(xxx+ rrr)
xxx2(xxx+ rrr)2 [S(rrr+(1−ξ )xxx,X(ξ ))−S(−ξ xxx,X(ξ ))S(rrr+ xxx,X(ξ ))] ,

(4.1)

Jv(kkk,ξ ,X(ξ )) =
∫

d2rrr e−ikkk·rrrJv(rrr,ξ ,X(ξ ))

≡
∫

d2rrr e−ikkk·rrr
∫ d2xxx
(2π)2 ᾱs

2
xxx2 [S(rrr− (1−ξ )xxx,X(ξ ))−S(−xxx,X(ξ ))S(rrr+ξ xxx,X(ξ ))] ,

(4.2)

and the BK equation in these notations simply reads

S(rrr,Xg) = S(rrr,X0)+2π

X0∫
Xg

dX
X

[J(rrr,ξ = 1,X)− Jv(rrr,ξ = 1,X)] . (4.3)

Using these expressions it becomes possible to use the same coordinate space running coupling
both in the impact factor and when solving the BK equation, thus restoring the correct LO limit
for the unsubtracted formulation and its equivalence with the subtracted one. The calculation of
one-loop running coupling corrections to the BK equation [33, 34, 32, 10] show that they can be
minimized by choosing the scale in a way that it reduces to ᾱs(rmin), with rmin ≡min{|rrr|, |xxx|, |rrr−
xxx|}, when there is a strong disparity between these three dipoles. This is satisfied in particular by
the smallest dipole prescription ᾱs(rmin) and by the Balitsky prescription [32] which is often used
in phenomenological studies. In [26] the previous expressions were evaluated with a generalization

7
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of the Balitsky prescription to ξ 6= 1 which led to very troublesome results: while the unsubtracted
and subtracted formulations are indeed equivalent, the NLO corrections change sign and the NLO
multiplicity can be up to two orders of magnitude larger than the LO one at large k⊥. This is shown
in Fig. 2 (R).

4.2 The fake potential problem and the daughter dipole prescription

To understand the origin of the issue observed in Fig. 2 (R), we will first consider a simpler
example, namely we will compare the following two quantities:

Nk ≡ ᾱs(k⊥)S (kkk) = ᾱs(k⊥)
∫

d2rrr e−ikkk·rrrS(rrr), (4.4)

Nr ≡
∫

d2rrr ᾱs(r⊥)e−ikkk·rrrS(rrr). (4.5)

Because rrr and kkk are Fourier conjugate, one could naively expect that these two quantities would
not differ a lot. However if we evaluate these expressions at large k⊥ in the simple McLerran-
Venugopalan (MV) model [29, 30], we obtain [27]

Nk '
4πᾱs(k⊥)Q2

s

k4
⊥

, (4.6)

Nr '−
4π

b̄[ln(k2
⊥/Λ2)]2

1
k2
⊥
, (4.7)

which means that they have opposite signs and different power tails. As shown in [27], the re-
sult (4.7) is physically incorrect since the 1/k2

⊥ tail appears because of the singular behavior of
ᾱs(r⊥) when r⊥→ 0. Let us stress that this issue, which is due to the fact that the choice of the
scale and the Fourier transform do not commute, is related to the UV behavior of the running
coupling, i.e. to asymptotic freedom, and not to the way it is regularized in the infrared.

This lack of commutation between the Fourier transform and the running coupling is also the
origin of the unphysical results at large k⊥ in Fig. 2 (R). A large k⊥ (compared to Qs) cannot
be provided by multiple scattering on the target, therefore it must be balanced by the unobserved
gluon. In coordinate space, this means that the dominant contribution to the multiplicity must come
from the region x⊥ ∼ r⊥. This physical condition is satisfied if one considers a fixed coupling or a
momentum space running coupling αs(k⊥), but not also for a running coupling, like αs(r⊥), which
depends on r⊥. To see this, consider the contribution from the complementary region at x⊥� r⊥,
which can be estimated as [27]

J (kkk,ξ )∼
∫

d2rrr
ᾱs

2π2 e−ikkk·rrr
∫

r⊥

d2xxx
xxx2 [S((1−ξ )xxx)−S(−ξ xxx)S(xxx)] for x⊥� r⊥ . (4.8)

The combination of dipole S-matrices within the square brackets grows like x2
⊥ for small x⊥ ∼ r⊥,

while it exponentially vanishes for larger x⊥ & 1/Qs. Accordingly the integral over xxx is dominated
by large values x⊥ ∼ 1/Qs and thus it is independent of its lower limit r⊥ in the approximation of
interest. So long as the coupling ᾱs ≡ αsNc/π is independent of r⊥, the final Fourier transform
yields a vanishing result and thus the dominant contribution to the integral comes from the region
x⊥ ∼ r⊥ as expected on physical grounds. On the contrary, if the coupling is chosen to depend on
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Figure 3: Left: Ratio of the NLO multiplicity (including only the Nc terms) and the LO one for different
running coupling prescriptions. Right: Ratio of the total NLO quark multiplicity (including both the Nc and
CF terms) and the LO one for three running coupling prescriptions. For comparison we also show the results
for ᾱs(k⊥) when including only the Nc terms (same as the curve “ᾱs(k⊥)” in the left panel). For both figures√

s = 500 GeV, η = 3.2 and the evolution of the color dipoles is obtained by solving the BK equation with
the smallest dipole prescription. Figure from [27].

r⊥, this dependence will lead to a large and unphysical contribution from the region x⊥� r⊥, i.e.
from soft primary gluons.

Following this discussion one could wonder why similar issues do not appear when solving the
BK equation with a coordinate space running coupling since the BK equation can be written using
the same integrals (4.3). The crucial difference here is that (4.3) involves the difference between J
and Jv, and in this combination the spurious contributions coming from the region x⊥� r⊥ cancel
as shown in [27]. In the case of the NLO multiplicity the real and virtual terms are weighted by
different PDFs as shown in (2.7) which prevents this cancellation.

Based on this, we arrive at our proposal to use the daughter dipole prescription ᾱs(x⊥) both
in the impact factor and when solving the BK equation. Indeed, since ᾱs(x⊥) does not depend on
r⊥, the final Fourier transform will still eliminate the unphysical contributions (4.8) coming from
the region x⊥� r⊥. In the physical region x⊥ ∼ r⊥ this choice is equivalent to the parent dipole
prescription ᾱs(r⊥) which looks reasonable since rrr and kkk are Fourier conjugate. Indeed, the results
obtained with this prescription are very close to the ones with a fixed or momentum space coupling
as shown in Fig. 3 (L). Using the daughter dipole prescription throughout the calculation we can
thus avoid the ambiguities of the mixed representation. However, note that this prescription is not
very natural when solving the BK equation since, as explained previously, one generally expects
that the scale of the running coupling should be set by the hardest scale in the problem. Another
issue is related to the CF terms and will be discussed in the following section.

4.3 The CF terms

For consistency it would be desirable to be able to use the same running coupling prescrip-
tion throughout the whole calculation. Therefore we now extend the previous discussion to the
NLO corrections proportional to the CF color factor. As explained in Sec. 2.2, these terms contain
collinear divergences which have to be absorbed into the DGLAP evolution of PDFs and fragmen-
tation functions. After this is done, one should replace I (2.8) and Iv (2.9) by their respective
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finite expressions I fin (2.13) and I fin
v (2.14). From these expressions one could anticipate that

the CF terms are subject to the same fake potential problem as the Nc terms when using a coupling
depending on r⊥. This is confirmed by the numerical results shown in [27]. A coordinate running
coupling would anyway be inconsistent for these terms since the procedure which was followed
in [19, 20] to subtract the collinear divergence would not be valid anymore and thus would not
lead to the expressions (2.13)-(2.14). In addition, while for the Nc terms it was possible to alleviate
the fake potential issue by using a daughter dipole running coupling ᾱs(x⊥), it is no longer the
case here since not all terms in I fin and I fin

v can be written as double integrals over rrr and xxx: the
collinear divergence subtraction removes a part of the phase space and we have no control on the
daughter dipole size x⊥ anymore.

Finally, let us recall that an important feature of the CF terms is that they vanish in the limit
ξ → 1, meaning that the integral over ξ is not logarithmic. This was to be expected since, contrary
to the Nc terms, the CF terms are not related to the high energy evolution. While it is easy to see
that I and Iv vanish separately when ξ → 1, one can show [27] that the sum of real and virtual
CF NLO corrections still vanishes after the collinear divergence subtraction as long as the coupling
is fixed or depends on the transverse momentum k⊥. Another important property of the CF (and
Nc) terms is that they should vanish in the limit S(rrr) = 1, i.e. in the absence of any scattering.
As shown in [27], these two properties hold with a fixed coupling or a momentum space running
coupling ᾱs(k⊥) but would be violated by a coordinate space running coupling such as ᾱs(r⊥).

As a result of these observations, the problem with using a coordinate space running coupling
appears to be even more severe in the case of the CF terms than for the Nc terms: the only choice
which would look reasonable at first, ᾱs(r⊥), would lead to the fake potential problem discussed
in the previous section, generate spurious longitudinal logarithms and prevent the vanishing of the
particle production cross section in the absence of scattering. Therefore the only sensible choice
for the CF terms seems to be ᾱs(k⊥). This is not fully satisfactory as we cannot use the same
coupling in the whole calculation. However, while in the case of the Nc terms it was important to
use the same coupling as when solving the BK equation to maintain the equivalence between the
subtracted and unsubtracted formulations, there is no such constraint here: the CF terms are a pure
NLO correction and the choice of the running coupling scale in these terms should be an NNLO
effect. In Fig. 3 we show the NLO quark multiplicity including both the CF and Nc terms for a
fixed coupling ᾱs = 0.2, ᾱs(k⊥) and the problematic ᾱs(r⊥). To better see the importance of the CF

terms we also show, in the case ᾱs(k⊥), the NLO result including only the Nc terms. The effect of
including the CF terms is sizable and reduces the difference between the LO and NLO results.

5. Conclusions

Promoting the Color Glass Condensate effective theory to NLO accuracy is very important
in order to improve the reliability of the predictions in this formalism. Recent progress has been
made in this direction by computing the NLO corrections both to the BK evolution and to several
process-specific impact factors. The issues met in the first implementations of these corrections
have been progressively understood and solved. We focused here on the NLO impact factor for
single inclusive forward particle production, which was first found to lead to unphysical results
at semi-hard transverse momenta. These issues were due to some approximations which, despite
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being formally valid at NLO accuracy, can have a large effect because of the necessary cancellation
of large contributions between LO and NLO. Physical results can be obtained at fixed coupling by
avoiding these approximations, and it should be noted that the calculation of DIS structure functions
at NLO is affected by a similar issue, which can be solved in the same way [35].

An issue more specific to the process we considered here is the implementation of the running
of the coupling. While the BK equation is usually solved in coordinate space, the impact factor is
most naturally expressed in momentum space. This makes the use of a unified running coupling
prescription difficult, and using a coordinate space formulation for the impact factor can lead to
unphysical results because of the non-commutativity of the Fourier transform with the choice of
the running coupling scale. The daughter dipole prescription can overcome most of these issues
but it cannot be used for some NLO corrections which are not related to high energy evolution. A
possibility to avoid this ambiguity would be to instead solve the BK equation in momentum space,
which would allow to use the same transverse scale throughout the whole calculation.

Finally, let us stress that for simplicity we considered here only the quark channel and ignored
the fragmentation of partons into hadrons. A realistic calculation should take into account the
gluon channel and fragmentation effects. In addition, to reach full NLO accuracy one should also
consider the NLO corrections to the high energy evolution of color dipoles [10, 11], supplemented
by the resummation of large collinear logarithms [15, 16, 17].
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