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1. Introduction

The possible existence of a chiral critical point in the QCD phase diagram at nonzero tempera-
ture T and quark chemical potential µ has stimulated a large amount of theoretical and experimental
efforts during the last two decades (see e.g. [1, 2, 3, 4, 5]). At low T and nonvanishing µ , where
lattice QCD techniques cannot be applied, QCD-inspired models, like the Nambu–Jona-Lasinio
(NJL) model or the quark-meson (QM) model, typically find a first-order chiral phase transition.
Beyond a given temperature, this transition line eventually terminates at a critical endpoint (CEP)
[6, 7], above which only a crossover is found, in agreement with the lattice result for vanishing
densities [8]. If these model calculations are performed considering only up and down quarks with
vanishing bare masses (the so-called chiral limit) one finds instead a second-order transition in the
low-µ-high-T regime which is connected to the first-order phase boundary at low T in a tricritical
point (TCP).

The underlying assumption which has been used to obtain the aforementioned picture is that
the chiral order parameter is spatially homogeneous. If one instead allows for spatial modulations,
inhomogeneous phases are found to be energetically favored over the homogeneous ones in certain
regions of the phase diagram (for a review see [9]). In particular, for a two-flavor NJL model in
the chiral limit one finds that the first-order phase boundary separating the homogeneous chirally
broken phase from the restored one is completely covered by an inhomogeneous phase. As a con-
sequence, a Lifshitz point (LP), which is the point where three different phases (the homogeneous
and inhomogeneous chirally broken phases, together with the restored one) meet, appears in the
phase diagram. In the simplest realization of a two-flavor NJL model in the chiral limit, it was
shown within a Ginzburg-Landau (GL) analysis that the LP is located at the same position in the
T -µ plane as the TCP in the case when inhomogeneous phases are not considered [10].

In this contribution we discuss how the presence of bare quark masses and of strange quarks
affects this result. Inhomogeneous phases in a two-flavor NJL model with nonzero current masses
have already been studied in Ref. [11]. There it was found numerically that the inhomogeneous
region shrinks with increasing quark masses but still covers the entire first-order phase boundary
between the homogeneous chirally broken and restored phases. In Ref. [12] we have recently
confirmed this more rigorously within a GL analysis, showing that the tip of the inhomogeneous
phase, which we termed “pseudo-Lifshitz point” (PLP), exactly coincides with the CEP. This will
be discussed in section 2.

In section 3 we extend our GL study to a three-flavor NJL model. A first investigation of
inhomogeneous phases in three-flavor matter has been performed in Ref. [13], albeit only for van-
ishing temperatures and employing a simple explicit ansatz for the spatial dependence of the chiral
condensate. Our analysis will instead allow us to investigate the relation between the CEP and the
(P)LP, an aspect which is of particular interest: Indeed, our motivation for including strange quarks
is not only that they may play a role under realistic conditions, e.g., in astrophysical scenarios, but
also the fact that in the limit of three very light quark flavors the first-order phase boundary (and
hence the CEP) is expected to eventually reach the T axis [3]. Therefore, if the (P)LP still coincides
with the CEP for three flavors and assuming that the same holds in QCD, this particular limit would
open the possibility to study inhomogeneous phases at µ = 0 on the lattice.
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2. Inhomogeneous phases away from the chiral limit

We consider the standard NJL-model Lagrangian

L = ψ̄
(
iγµ

∂µ −m
)

ψ +G
{
(ψ̄ψ)2 +(ψ̄iγ5~τψ)2} , (2.1)

describing quark fields ψ with bare mass m and N f = 2 and Nc = 3 color degrees of freedom, inter-
acting via scalar-isoscalar and pseudoscalar-isovector four-point vertices proportional to a coupling
constant G.

We perform a mean-field approximation, linearizing the interaction in the presence of a scalar
condensate 〈ψ̄ψ〉. In order to describe inhomogeneous phases we generally allow the condensate
to depend on the spatial coordinate x but we assume it to be time independent. For simplicity we re-
strict ourselves to scalar condensates. The inclusion of pseudoscalar condensates is straightforward
but it is well known for homogeneous phases that they are disfavored against scalar condensates if
m 6= 0. In Ref. [12] we have shown that this is also true for inhomogeneous condensates, at least in
the regime where the GL analysis we discuss below is valid. The mean-field Lagrangian then takes
the form

LMF = ψ̄
(
iγµ

∂µ −M(x)
)

ψ− (M(x)−m)2

4G
, (2.2)

where
M(x) = m−2G〈ψ̄ψ〉(x) (2.3)

can be interpreted as a space-dependent constituent quark mass.
Noting that LMF is bilinear in the quark fields, the mean-field thermodynamic potential per

volume Ω(T,µ) = −T/V logZ (T,µ) can be obtained by standard path-integral techniques. One
finds

Ω(T,µ) =−T
V

Tr logS−1 +
1
V

∫
V

d3x
(M(x)−m)2

4G
, (2.4)

where
S−1(x) = iγµ

∂µ +µγ
0−M(x) (2.5)

is the inverse dressed quark propagator, V is a quantization volume, and the functional trace Tr
runs over the Euclidean 4-volume V4 = [0, 1

T ]×V as well as over Dirac, color and flavor degrees of
freedom.

2.1 Ginzburg-Landau analysis of critical and Lifshitz points

In order to find the thermodynamically favored state at given T and µ , Ω has to be mini-
mized with respect to the mass function M(x). This is obviously a nontrivial task. The position of
the (P)LP, on the other hand, can be determined within a GL analysis, which is possible without
knowing the explicit form of M(x).

In the chiral limit, m= 0, the GL expansion corresponds to an expansion of the thermodynamic
potential about the chirally restored phase, M(x) = 0 in terms of powers and gradients of M:

Ω[M] = Ω[0]+
1
V

∫
d3x
(

α2 M2(x)+α4,a M4(x)+α4,b (∇M(x))2 + . . .
)
. (2.6)
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Figure 1: Qualitative behavior of the thermodynamic potential Ω in the chiral limit as a function of a
spatially homogeneous order parameter M (from left to right): (i) restored phase, (ii) broken phase, (iii)
second-order phase transition, (iv) first-order phase transition, (v) TCP.

Here odd powers are forbidden by chiral symmetry, which implies that Ω is invariant under M→
−M. The GL coefficients αi are functions of T and µ and thus determine the phase structure.

In the following we assume that M and ∇M are small and that the coefficients of all higher-
order terms (indicated by the ellipsis in Eq. (2.6)) are positive. If α4,b is positive as well, gradients
are suppressed and the situation reduces to the standard case of a GL analysis for homogeneous
phases, which is illustrated in Fig. 1: If all coefficients are positive, the minimum of Ω is the
restored phase, M = 0 (i), while for α2 < 0 a solution with M 6= 0 ist favored (ii). If α4,a > 0 we
thus have a second-order phase transition at α2 = 0 (iii). For α4,a < 0, on the other hand, there can
be a minimum with M 6= 0, even for α2 > 0, so that we can have a first-order phase transition in
this case (iv). The TCP, where the first-order phase boundary goes over into a second-order one is
thus given by the condition α2 = α4,a = 0 (v).

For α4,b < 0 inhomogeneous phases can become favored over homogeneous ones. Its bound-
ary to the restored phase is found to be second order and determined by a balance between the
free-energy gain due to the negative α4,b term and a free-energy loss caused by a positive α2.
As a consequence, while the amplitude of the space-dependent modulation vanishes on the phase
boundary, its wave number stays finite and goes to zero only at the LP where both α2 and α4,b

vanish.
Away from the chiral limit, i.e., for m 6= 0 the situation is more complicated since there is

no exactly restored phase. We therefore expand the thermodynamic potential about an a priori
unknown mass M0, which may depend on T and µ but which we assume to be constant in space.
Then, writing M(x) = M0 + δM(x) and assuming that the fluctuations δM(x) and their gradients
are small, the expansion reads

Ω[M] = Ω[M0]+
1
V

∫
d3x
(
α1δM+α2δM2 +α3δM3 +α4,aδM4 +α4,b(∇δM)2 + . . .

)
, (2.7)

with coefficients αi which now depend on T , µ , and M0. In contrast to the chiral limit, the inte-
grand now contains both even and odd powers of δM. In the following we will assume that M0

corresponds to a stationary point of the thermodynamic potential at given values of T and µ . This
implies that the linear term vanishes, α1(T,µ;M0) = 0, which corresponds to a gap equation for
M0(T,µ). As we will see below, it is however crucial to keep the α3 term.

Again, we first consider the homogeneous case, illustrated in Fig. 2. Although there is no
strictly restored phase for m 6= 0 we can have a first-order phase transition where Ω as a function
of M has two degenerate minima separated by a maximum (i). If we now move along the phase
boundary towards the CEP, the maximum gets more and more shallow until the three extrema
merge to a single minimum at the CEP (ii). Alternatively we can approach the CEP along the
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Figure 2: Qualitative behavior of the thermodynamic potential Ω for m 6= 0 as a function of a spatially
homogeneous order parameter M (from left to right): (i) at a first-order phase boundary , (ii) at the CEP, (iii)
at the left spinodal, (iv) at the right spinodal.

spinodals, which correspond to the lines in the T -µ plane where one of the two minima merges
with the maximum to a saddle point, see Fig. 2 (iii) and (iv). Either way one can convince oneself
that the CEP is characterized by α2 = α3 = 0. For instance on the saddlepoint of the left spinodal
(iii) the second derivative of Ω with respect to δM vanishes while the third derivative is negative,
corresponding to α2 = 0 and α3 < 0 if we expand about this point. On the other hand, if we expand
about the saddlepoint of the right spinodal, we get α2 = 0 and α3 > 0, and therefore both α2 and
α3 vanish at the CEP where the two spinodals meet.

Lacking a chirally restored phase away from the chiral limit, there also cannot exist a Lifshitz
point, where the second-order boundary between the homogeneous chirally broken and restored
phases meets the boundaries of an inhomogeneous phase. It is still possible however to realize a
second-order transition between a homogeneous and an inhomogeneous phase where the amplitude
of the oscillating part of M(x) goes to zero, while its wave number can stay finite. In analogy to
the LP we then define the PLP as the point on that phase boundary where this wave number also
vanishes. Since our expansion point M0 is constant, the oscillating part is entirely contained in δM.
In the same way as for the LP in the chiral limit we therefore find that α2 = α4,b = 0 at the PLP.
Moreover, as argued in Ref. [12], the phase boundary cannot continue in a smooth way beyond this
point. It is therefore most plausible to identify it with the tip of the inhomogeneous phase in the
T -µ plane. This was also confirmed numerically.

In summary, we find

α2 = α4,a = 0 at the TCP, α2 = α4,b = 0 at the LP (2.8)

in the chiral limit for an expansion around M = 0, and

α2 = α3 = 0 at the CEP, α2 = α4,b = 0 at the PLP (2.9)

away from the chiral limit for an expansion around a stationary point M0(T,µ), which is obtained
by simultaneously solving the gap equation α1 = 0.

2.2 Determination of the GL coefficients

For the explicit determination of the GL coefficients in the NJL model we basically follow
Ref. [10]. Inserting our decomposition M(x) = M0 +δM(x) of the constituent mass function into
the mean-field thermodynamic potential, Eq. (2.4), one gets

Ω =−T
V

Tr log(S−1
0 −δM) +

1
V

∫
V

d3x
(M0−m+δM(x))2

4G
, (2.10)
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where S−1
0 (x) = iγµ∂µ +µγ0−M0 depends only on the constant mass M0. Expanding the logarithm

into a Taylor series about S−1
0 this can be written as Ω = ∑

∞
n=0 Ω(n) where Ω(n) is of the nth order

in the fluctuating fields δM. Specifically one obtains

Ω
(1) =

T
V

Tr (S0δM) +
M0−m

2G
1
V

∫
V

d3x δM(x) , (2.11)

Ω
(2) =

1
2

T
V

Tr (S0δM)2 +
1

4G
1
V

∫
V

d3x δM2(x) , (2.12)

Ω
(n) =

1
n

T
V

Tr (S0δM)n for n≥ 3. (2.13)

The functional traces are given by

Tr (S0δM)n = 2Nc

∫ n

∏
i=1

d4xi trD [S0(xn,x1)δM(x1)S0(x1,x2)δM(x2) . . .S0(xn−1,xn)δM(xn)] ,

(2.14)
where the integrals are again over V4, trD indicates a trace in Dirac space, and we have already
turned out the trivial traces in color and flavor space. Noting that S0 is the standard propagator of
a free fermion with mass M0 at chemical potential µ , the evaluation of the Dirac trace is straight-
forward using the momentum-space representation of S0. After performing a gradient expansion
of δM(xi) about x1, i.e., δM(xi) = δM(x1)+∇δM(x1) · (xi−x1)+ . . . , one can also perform the
integrations over all space-time variables xi 6= x1 and then compare the results with Eq. (2.7) to read
off the GL coefficients. One finds:

α1 =
M0−m

2G
+M0F1 , (2.15)

α2 =
1

4G
+

1
2

F1 +M2
0 F2 , (2.16)

α3 = M0

(
F2 +

4
3

M2
0 F3

)
, (2.17)

α4,a =
1
4

F2 +2M2
0 F3 +2M4

0 F4 , (2.18)

α4,b =
1
4

F2 +
1
3

M2
0 F3 , (2.19)

where we have introduced the functions

Fn = 8Nc

∫ d3 p
(2π)3 T ∑

j

1
[(iω j +µ)2−p2−M2

0 ]
n (2.20)

with fermionic Matsubara frequencies ω j = (2 j+1)πT .
Even without further evaluation, we can spot several interesting consequences of the above

results:

• In the chiral limit, m = 0, the restored phase M0 = 0 is a solution of the gap equation α1 = 0.
Expanding about this solution, α3 vanishes as well, in agreement with Eq. (2.6). Moreover,
we reproduce the result α4,a = α4,b of Ref. [10], meaning that the LP coincides with the TCP
in the chiral limit.

5
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• Considering M0 6= 0, but taking the limit M0→ 0 the α3 = 0 line in the T -µ plane approaches
the α4,a = 0 line, and hence the CEP converges against the TCP (coinciding with the LP).

• For arbitrary M0 we have α3 = 4M0α4,b. For M0 6= 0 this implies that the PLP coincides with
the CEP.

Hence, since the PLP corresponds to the tip of the inhomogeneous phase, the latter “ends” exactly
at the same point as the first-order phase boundary in a purely homogeneous treatment of the
same model. This is analogous to the coincidence of the LP with the TCP in the chiral limit. Of
course, the GL study does not prove the existence of the CEP in the first place but only predicts
that if there is a first-order phase transition in a homogeneous treatment of the model, then there
should be an inhomogeneous phase, at least in the vicinity of the CEP. In fact, numerically one
finds that the inhomogeneous phase covers the entire first-order boundary. We also found that
the inhomogeneous phase shrinks as one moves away from the chiral limit, but survives even at
significantly large values of the current quark mass [12].

On the other hand, even in the chiral limit the LP and TCP do not necessarily coincide any-
more, if the model is modified, e.g., by adding a vector term [14]. In the next section we will study
whether this is the case when strange quarks are added to the model.

3. Including strange quarks

We now consider the Lagrangian

L = ψ̄
(
iγµ

∂µ − m̂
)

ψ +L4 +L6 (3.1)

where ψ = (u,d,s)T denotes a quark field with three flavor degrees of freedom and m̂ is the cor-
responding bare mass matrix. The last two terms describe a U(3)L×U(3)R invariant four-point
interaction

L4 = G
8

∑
a=0

[
(ψ̄τaψ)2 +(ψ̄iγ5τaψ)2] , (3.2)

and a six-point (“Kobayashi - Maskawa - ’t Hooft”, KMT) interaction

L6 =−K [det f ψ̄(1+ γ5)ψ +det f ψ̄(1− γ5)ψ] , (3.3)

which is SU(3)L×SU(3)R symmetric but breaks the U(1)A symmetry, mimicking the axial anomaly.
In the former τa, a = 1, . . . ,8, denote Gell-Mann matrices in flavor space while τ0 =

√
2/31 is pro-

portional to the unit matrix.
Starting from these Lagrangians, we perform again a mean-field approximation, considering

the non-strange and strange condensates

σ`(x)≡ 〈ūu〉(x) = 〈d̄d〉(x) and σs(x)≡ 〈s̄s〉(x) , (3.4)

which may be space dependent. Proceeding analogously as in the two-flavor case, the mean-field
thermodynamic potential becomes

Ω(T,µ) =−T
V

Tr logS−1 +
1
V

∫
V

d3x
{

2G(2σ
2
` +σ

2
s )−4Kσ

2
` σs
}
, (3.5)

6



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
2
0
2

Influence of quark masses and strangeness d.o.f. on inhomogeneous chiral phases Michael Buballa

where the inverse dressed quark propagator is now given by S−1 = diag f (S
−1
u ,S−1

d ,S−1
s ) with the

flavor components
S−1

f (x) = iγµ
∂µ +µγ

0−M f (x) . (3.6)

and the constituent mass functions

M`(x) = m`−4Gσ`(x)+2Kσs(x)σ`(x) and Ms(x) = ms−4Gσs(x)+2Kσ
2
` (x) . (3.7)

Here we assumed isospin symmetry in the light sector, mu = md ≡ m`, and thus Mu = Md ≡M`.
From the above expressions we can see that the different flavors only couple through the six-

point interaction and decouple for K = 0. This is well known from earlier studies of this model but
will also play an important role in our analysis below.

3.1 Ginzburg-Landau analysis

The GL expansion of the thermodynamic potential introduced above is again complicated by
the fact that in the presence of nonvanishing bare quark masses there is no chirally restored solution.
On the other hand, at least for the strange quark, neglecting the mass would be a rather unrealistic
approximation. We therefore consider a partially simplified problem with ms 6= 0 but m` = 0. In
this case a two-flavor restored solution σ` = 0 exists, which we take as the expansion point of our
GL analysis. In the strange-quark sector we proceed similarly as in the previous section and expand
about a T and µ dependent but spatially constant condensate σ

(0)
s , corresponding to a stationary

point of Ω at σ` = 0. We thus write

σs(x) = σ
(0)
s +δσs(x) (3.8)

and expand

Ω[σ`,σs] = Ω[0,σ (0)
s ]+

1
V

∫
d3xωGL(∆`,∆s) , (3.9)

where
∆`(x) =−4Gσ`(x) and ∆s(x) =−4Gδσs(x) (3.10)

are proportional to the fluctuations. The GL function takes the form

ωGL(∆`,∆s) = α2∆
2
` +α4,a∆

4
` +α4,b(∇∆`)

2 + . . .

+β1∆s +β2∆
2
s +β3∆

3
s +β4,a∆

4
s +β4,b(∇∆s)

2 + . . .

+γ3∆
2
`∆s + γ4∆

2
`∆

2
s + . . . , (3.11)

where the α- and β -terms correspond to the contributions from the light and strange condensates,
respectively, and the γ terms describe the mixing. Since we expand about the two-flavor restored
phase, only even powers of ∆` are allowed, and the structure of the α-terms is the same as in the
GL expansion of the two-flavor model in the chiral limit, Eq. (2.6). For ∆s, on the other hand, we
can also have odd terms, so that the β -terms have a structure as in Eq. (2.7). Again, for a stationary
expansion point, the linear coefficient β1 has to vanish, giving rise to a gap equation for σ

(0)
s at

given T and µ .
For vanishing γi the GL analysis of the non-strange sector would be analogous to the two-

flavor case in the chiral limit, i.e., the tricritical and Lifshitz points are related to the α coefficients

7
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as in Eq. (2.8). In order to study how these relations get modified by γi 6= 0, we eliminate ∆s by
extremizing the thermodynamic potential with respect to this function. To this end we employ the
Euler-Lagrange equations,

∂ωGL

∂∆s
−∂i

∂ωGL

∂∂i∆s
= 0 , (3.12)

which yields
∆s =−

γ3

2β2
∆

2
` + · · · ≡ ∆

extr
s . (3.13)

Here we have already used the gap equation β1 = 0. The ellipsis indicates higher orders in ∆` and
gradients, which we treat equally, O(∇n) = O(∆n

`). From the above equation we can then see that
∆s is of the order O(∆2

`). Inserting Eq. (3.13) into Eq. (3.11) and keeping only terms up to the order
O(∆4

`), one then obtains

ωGL(∆`,∆
extr
s ) = α2∆

2
` +

(
α4,a−

γ2
3

4β2

)
∆

4
` +α4,b(∇∆`)

2 + . . . (3.14)

We thus find that the quartic term in ∆` gets an additional contribution through the coupling to the
strange quarks, while the gradient term does not. So, instead of Eq. (2.8), we now have

α2 = α4,a−
γ2

3
4β2

= 0 at the TCP, α2 = α4,b = 0 at the LP , (3.15)

and therefore, even if α4,a and α4,b were still equal (as they are in the two-flavor model), the TCP
and the LP would no longer coincide for γ3 6= 0.

Of course, in order to be able to make definite statements we have to evaluate the relevant GL
coefficients. This can be done in the same way as discussed in Sec. 2.2 for the two-flavor model.
We find

α2 = (1+2δ )
1

4G
+(1+δ )2 1

2
F(`)

1 +
K

16G2 Ms,0F(s)
1 , (3.16)

α4,a = (1+δ )4 1
4

F(`)
2 +

K2

256G4

(
F(s)

1 +2M2
s,0F(s)

2

)
, (3.17)

α4,b = (1+δ )2 1
4

F(`)
2 , (3.18)

β2 =
1

8G
+

1
4

F(s)
1 +

1
2

M2
s,0F(s)

2 , (3.19)

γ3 =
K

2G2

{
1

8G
+(1+δ )

1
4

F(`)
1 +

1
8

F(s)
1 +

1
4

M2
s,0F(s)

2

}
, (3.20)

where Ms,0 = ms− 4Gσ
(0)
s , and F(`)

n and F(s)
n are the functions defined in Eq. (2.20) with M0 = 0

and M0 = Ms,0, respectively. Furthermore we defined δ =− K
2G σ

(0)
s .

As we have seen earlier, the different flavors are only coupled through the six-point interaction.
Indeed, for K = 0 and thus δ = 0, the flavor mixing coefficient γ3 vanishes, and the α coefficients
reduce to the corresponding two-flavor expressions in the chiral limit. In particular, we reproduce
again the result of Ref. [10] that TCP and LP coincide in this case.

For K 6= 0, on the other hand, γ3 6= 0 and therefore TCP and LP would not even coincide if
α4,a and α4,b were equal, as seen in Eq. (3.15). Moreover, α4,a and α4,b are not equal, and the two
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effects are not found to cancel each other. We thus find that TCP and LP split for K 6= 0, i.e., as a
consequence of the axial anomaly. A quantitative investigation of this effect will be presented in a
forthcoming paper [15].

4. Conclusions

In this contribution we discussed how the introduction of nonzero bare quark masses and
of strange quarks affects inhomogeneous phases in the NJL model. To this end we performed a
Ginzburg-Landau analysis, which allows to investigate these effects without specifying the shape
of the spatial modulations and is valid close to the LP. Strictly speaking, away from the chiral limit
one cannot define a LP as the location where the second-order boundary between the homogeneous
chirally broken and restored phases meets the boundaries of an inhomogeneous phase. We therefore
introduce the pseudo-LP as the point on that phase boundary where both the amplitude and the
wave number of the spatially modulated part of the chiral order parameter vanish. Our results for a
two-flavor model show that the PLP exactly coincides with the CEP [12], supporting the numerical
evidence found in [11].

When extending our analysis to include strange quarks we find on the other hand that the LP
and the TCP split when the different flavors are coupled through a non-vanishing KMT vertex. Here
we have considered massive strange quarks but massless up and down quarks. In a forthcoming
publication we will perform a full quantitative investigation of this effect and corroborate it with
numerical results away from the chiral limit. There we will also investigate the behavior of the
LP for very small values of ms. This is of special interest, as we expect that in this limit the TCP
eventually reaches the T -axis. If the LP followed the same behavior, it would mean that it would be
possible to realize an inhomogeneous phase all the way to the regime of vanishing densities, which,
if also realized in QCD, could be investigated on the lattice. In the light of the above results we
conclude that this scenario might however not be realized, as in the three-flavor case the LP does
not coincide with the TCP anymore. A quantitative investigation of this effect is therefore required.

Finally, we recall that, while our analysis focused on the lowest-order GL coefficients which
are relevant for pinpointing the location of the CP and the (P)LP, it would also be interesting to work
out higher-order coefficients, as they can give informations on the favored shape of the spatially
modulated chiral condensate [16, 17], as well as determine the phase boundary to the chirally
restored phase [18].
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