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The behavior of the ϕ meson in nuclear matter has attracted renewed interest because of (recent
and future) experiments that aim to study the ϕ meson properties in nuclei. Theoretically, many
works have however been conducted for the ϕ meson at rest with respect to the nuclear medium.
In these proceedings, I will review recent theoretical progress related to this topic. Non-zero
momentum effects will be especially relevant for future experiments, such as E16 at J-PARC,
where the ϕ meson will not be measured at rest, but with finite momentum with respect to the
surrounding nucleus.
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1. Introduction

Vector mesons in dense matter have been in the focus of theoretical and experimental interest
already for a long time, partly because some of them (the ρ , ω and the ϕ ) were predicted to be
probes of the partial restoration of chiral symmetry in nuclear matter [1]. Furthermore, due to their
decay into di-leptons, which do not interact strongly, they provide a relatively clear experimental
signal that does not get strongly distorted by strong final state interactions and therefore in principle
allow direct access to the medium to be studied.

Taking a more general point of view, understanding hadron properties from the first principles
of QCD is one of the fundamental goals of hadron physics. Rapid progress in the field of lattice
QCD has allowed to approach this goal in recent years, at least for the hadronic ground states in
vacuum, which can now be studied at physical pion masses including dynamical quarks in state-of-
the-art lattice calculations. It is, however, still difficult even today to generalize these calculations to
finite density, where lattice QCD suffers from the so-called sign problem, which prevents important
sampling, which is used to numerically compute the QCD path integral in standard lattice QCD cal-
culations, from being useful and practically feasable on a machine. To solve this problem, several
approaches such as the use of the complex Langevin equation [2], the Taylor expansion method for
the small µ/T region [3], analytically continuing calculations with an imaginary chemical poten-
tial (where there is no sign problem) [4] or the use of Lefschetz thimbles [5], have been proposed.
A real solution to the sign problem and hence realistic lattice QCD simulations of hadrons at finite
density however still appears to be out of reach at least in the near future.

To study the behavior of hadrons at finite density, one therefore presently needs to rely on
alternative methods. These are either effective theory approaches based on hadronic degrees of
freedom or methods relying on the basic degrees of freedom of QCD, quarks and gluons. We will
in these proceedings discuss recent results about the ϕ meson properties in nuclear matter, which
were obtained using QCD sum rules in combination with the maximum entropy method [6]. For
recent results using hadronic models, see for instance Refs. [7, 8, 9, 10].

2. The behavior of the ϕ meson at rest in nuclear matter

Let us here first review a few recent theoretical results concerning the ϕ meson at finite density
and zero momentum. As mentioned above, lattice QCD is presently not able to study this problem
because of the sign problem. In QCD sum rules, which can be used to study non-zero density
systems as long as the baryon density is not much above that of normal nuclear matter, one defines
the follwing two-point function

Πµν(q0,qqq) = i
∫

dx4eiqx
⟨

T
[

jµ(x) jν(0)
]⟩

ρ
, (2.1)

where to study the ϕ meson, we have jµ(x) = s(x)γµs(x) while ⟨· · ·⟩ρ is the expectation value
with respect to the ground state with the baryon density fixed to ρ . Because of the breaking of
Lorentz symmetry due to the existence of a matter rest frame, Πµν(q0,qqq) can become quite a
complicated and generally involves two independent scalar components (see, for instance Refs.[12,
13]). However, as long as one works in the limit of vanishing momentum, qqq = 0, which we will do
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here, it suffices to consider only the contracted component Π(q2
0) = − 1

3q2
0
Πµ

µ(q0,qqq = 0), which is

the only independent component in this case. The analytic properties of Π(q2
0) allows one to derive

Π(q2
0) =

1
π

∫ ∞

0
ds

ImΠ(s)
s−q2

0 − iε
, (2.2)

the so-called dispersion (or Kramers-Kroenig) relation. The QCD sum rule approach now makes
use of the asymptotic freedom of QCD, which states that QCD becomes weakly coupled at large
|q2

0|. Therefore, one can compute Π(q2
0) in this region using perturbation theory and the operator

product expansion (OPE), resulting in a power series in 1/q2
0, whose coefficients contain QCD con-

densates of operators that appear in the OPE and parts of the respective Wilson coefficients, which
are themselves computed as an expansion in αs, the strong coupling constant of QCD. ImΠ(s)
appearing on the right-hand side of Eq. (2.2) is nothing but the spectral function of the operator
jµ(x), that is, it contains all physical states with energy

√
s that couple to jµ(x). Note furthermore

that jµ(x) can be viewed as the stange part of the electromagnetic current. Therefore, ImΠ(s) can
also be related to the physically observable di-lepton rate. Our task would be complete if we would
be able to exactly compute ImΠ(s) for any density in the region of the ϕ meson resonance. In
the vacuum, the OPE for Π(q2) gives [in the vacuum, Π(q2) depends only on q2 = q2

0 −qqq2 due to
Lorentz invariance]

9Π(q2 =−Q2) =−c0 log
(Q2

µ2

)
+

c2

Q2 +
c4

Q4 +
c6

Q6 + . . . , (2.3)

where µ is the renormalization scale. The first few coefficients cn are obtained as

c0 =
1

4π2

(
1+

αs

π

)
, c2 =−3m2

s

2π2 , (2.4)

c4 =
1

12

⟨αs

π
G2

⟩
0
+2ms⟨ss⟩0, (2.5)

c6 = −2παs

[
⟨(sγµγ5 λ a s)2⟩0 +

2
9
⟨(sγµ λ a s) ∑

q=u,d,s
(qγµ λ a q)⟩0

]
. (2.6)

Higher order terms in αs and ms (strange quark mass) have been computed in the past [see Ref. [11]
and the references cited therein], while in Eqs. (2.4-2.6) only the most important terms are given
for simplicity.

To make the dispersion relation useful in preactice, it needs to be modified. As it is shown in
Eq. (2.2) the integral in fact does not converge, which translates into infinite subtraction constants
on the left-hand side. This issue can be averted by applying the Borel transform to Π(q2), which
furthermore improves the convergence properties of the OPE. Applying the OPE to Eq. (2.2) leads
to

ΠB(M2) =
1

M2

∫ ∞

0
dse−s/M2

ρ(s), (2.7)

where we have defined ρ(s) as ρ(s) = 1
π ImΠ(s). In Ref.[11], we have applied the maximum

entropy method (MEM) to analyze the sum rule of Eq. (2.7). This technique was first developed in
Ref.[6], which we refer the reader to for further details.

When going from vacuum to finite density, the OPE inputs of the sum rules are modifed.
Vacuum condensates, for instance, change as a function of density. This dependence on the density
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Figure 1: The ϕ meson mass as a function of density for two typical values of the strange sigma term
σsN obtained in relatively recent lattice QCD calculations [14, 15] (for more recent results, see for instance,
Refs. [16, 17]). The ϕ meson mass is given relative to its vacuum value, while the density is given in units
of the nuclear matter density ρ0. Adapted from Ref.[11].

is however often not well known. At present, one can at most make statements about the value of
condensates in the linear density approximation. For the condensates with lowest mass dimension,
this approximation gives

⟨ss⟩ρ ≃ ⟨ss⟩0 + ⟨N|ss|N⟩ρ = ⟨ss⟩0 +
σsN

ms
ρ, (2.8)⟨αs

π
G2

⟩
ρ
≃

⟨αs

π
G2

⟩
0
+
⟨

N
∣∣∣αs

π
G2

∣∣∣N⟩
=
⟨αs

π
G2

⟩
0
− 8

9
(MN −σπN −σsN)ρ. (2.9)

MN is the nucleon mass, σπN the πN sigma term and σsN the nucleon strange sigma term. ⟨N| · · · |N⟩
stands for the expectation value with respect to a one-nucleon state. The linear density approxi-
mation therefore completely ignores correlations between nuclei and only takes into account inde-
pendent contributions of each nucleon separately. Besides the condensates that are already present
in the vacuum, new non-scalar condensates can appear at finite density. For instance, a spin-2 (or
twist-2) condensate is generated due to quark fields at dimension 4:

⟨N|S T sγµ iDνs|N⟩=
As

2
2MN

(
pµ pν − 1

4
M2

Ngµν
)
. (2.10)

S T make thie following structure symmetric and traceless with repect to its Lorentz indices
[S T Aµν ≡ 1

2(A
µν +Aνµ)− 1

4 gµνAα
α ], while pµ is the nucleon four-momentum (p2 = M2

N). As
2

stands for the first moment of the strange and anti-strange quark parton distributions of the nucleon:

As
2 = 2

∫ 1

0
dxx[s(x)+ s(x)]. (2.11)

More non-scalar condensates are considered for instance in Ref.[11]. We furthermore refer the in-
terested reader to Ref.[13], where a complete list of independent scalar and non-scalar condensates
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(up to dimension 6) that appear in the OPE of the vector correlator and their respective Wilson
coefficients are given at leading order in αs. Some values of these condensates are not well known
even in the linear density approximation, while others have been constrained only recently due to
the emergence of new experimental data [18].

All the finite density effects discussed above lead to modified coefficients cn in Eq. 2.3. The
lowest two (c0 and c2) do not depend on density, while all others generally do. Keeping only the
contributions explicitly mentioned in this section, the linear density term of c4 (denoted as δc4

here) reads

δc4 =

[(
As

2 −
2
27

)
MN +

2
27

(28σsN +σπN)

]
ρ. (2.12)

For the corresponding expression for c6, see for instance Ref.[11]. The most dominant terms in
the above expression are the 2

27 MN and the σsN terms. The former originates from the modification
of the gluon condensate [see Eq. (2.9)] and the latter dominantly from that of the strange quark
condensate [see Eq. (2.8)]. Especially the value of σsN , which in principle can be computed using
lattice QCD, but is presently still not well constrained partly because of the numerical difficulty to
compute it on the lattice with good precision. As we will demonstrate in the next paragraph, QCD
sum rules relate the value of σsN to the mass shift of the ϕ meson in nuclear matter.

Let us now discuss the results of the MEM analysis of the ϕ meson sum rules given in Ref.[11].
To keep the description simple, we in these proceedings will only show our findings on the mass
shift of the ϕ meson peak that appears in the spectral function. Detailed estimates of the effects of
broadening and other systematic uncertainties are provided in Ref.[11]. Let us just mention here
that sum rules are generally not very sensitive to peak broadening effects, because these effects are
eliminated to a large extent as the integral over the spectral function of Eq. (2.7) is computed. It
therefore is not very meaningful to study broadening effects using QCD sum rules and we will thus
focus on the mass shift here. In Fig. 1 the ϕ meson mass is shown as a function of density for two
representative values of σsN , obtained in fairly recent lattice QCD calculations [14, 15].

mϕ (ρ)
mϕ (0)

−1 =

[
b0 −b1

( σsN

1MeV

)] ρ
ρ0

, (2.13)

It can be understood from this figure that the mass shift caused by the finite density effects depends
strongly on the value of σsN . This dependence becomes more evident in Fig. 2, where the ϕ meson
mass at normal nuclear matter density ρ0 is shown as a function of σsN . It is observed in this plot
that the ϕ meson mass shift at ρ0 depends linearly on σsN and is positive for σsN < 35 MeV, and
turns negative for σsN > 35 MeV. To cast this result in a simple formula, we have fitted the ϕ meson
mass shift at ρ0 by a constant plus a term linear in σsN , for which we get b0 = (1.00±0.34)×10−2

and b1 = (2.86±0.48)×10−4, meaning that the mass shift switches its sign at a σsN/1 MeV value
of b0/b1 = 34.9±13.1.

3. Towards studying the ϕ meson in nuclear matter with non-zero momentum

So far, we have only studied the ϕ meson at rest with respect to nulear matter, primarily be-
cause this case is most straghtforward to compute. From an experimental point of view, however,
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Figure 2: The ϕ meson mass at normal nuclear matter density ρ0 as a function of σsN . Adapted from
Ref.[11].

this is not very realistic, as the ϕ will very likely move with some non-vanishing velocity once it
is produced inside the nucleus through some kind of reaction. Therefore, the effect of such non-
zero velocity has to be studied. Long time ago, this was already done in Ref. [19], using the OPE
results that were known at that time. Recently, the OPE of the vector channel was completed up
to operators with mass dimension 6, including non-scalar gluonic dimension 6 operators, whose
Wilson coefficients have not been obtained before [13]. With these results at hand, we can now
study the effect of non-zero velocity/momentum with much less theoretical uncertainty. Calcula-
tions towards this direction are presently ongoing and we hope to obtain meaningful results soon.
Such results will be especially meaningful for the future E16 experiment at J-PARC, for which on
propagated goal is to measure the mass shift of the ϕ at normal nuclear matter density as a function
of momentum [20].

4. Summary and Conclusions

In these proceedings, we have discussed the ϕ meson mass shift in nuclear matter and its po-
tential to constrain strangeness sigma term σsN . An experimental measurement of this mass shift
and direct lattice QCD computations of σsN will help to obtain precise information about the way
chiral symmetry in the strange sector is restored in a medium with non-zero baryon density. Fur-
thermore, we have mentioned the possibily to take finite momentum effects into account in future
calculations. Such calculations will hopefully provide useful guidance for the E16 experiment at
J-PARC, which is scheduled to start in early 2020.

Acknowledgments

The author thanks HyungJoo Kim, Su Houng Lee, Keisuke Ohtani, Makoto Oka, Kie Sang
Jeong and Wolfram Weise for the fruitful collaborations that are mentioned in these proceedings.

5



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
2
0
7

Towards the ϕ meson in nuclear matter with finite momentum Philipp Gubler

References

[1] T. Hatsuda and S. H. Lee, Phys. Rev. C 46, no. 1, R34 (1992).

[2] G. Aarts, E. Seiler and I. O. Stamatescu, Phys. Rev. D 81, 054508 (2010) [arXiv:0912.3360 [hep-lat]].

[3] C. R. Allton, S. Ejiri, S. J. Hands, O. Kaczmarek, F. Karsch, E. Laermann, C. Schmidt and
L. Scorzato, Phys. Rev. D 66, 074507 (2002) [hep-lat/0204010].

[4] M. G. Alford, A. Kapustin and F. Wilczek, Phys. Rev. D 59, 054502 (1999) [hep-lat/9807039].

[5] M. Cristoforetti et al. [AuroraScience Collaboration], Phys. Rev. D 86, 074506 (2012)
[arXiv:1205.3996 [hep-lat]].

[6] P. Gubler and M. Oka, Prog. Theor. Phys. 124, 995 (2010) [arXiv:1005.2459 [hep-ph]].

[7] P. Gubler and W. Weise, Phys. Lett. B 751, 396 (2015) [arXiv:1507.03769 [hep-ph]].

[8] P. Gubler and W. Weise, Nucl. Phys. A 954, 125 (2016) [arXiv:1602.09126 [hep-ph]].

[9] D. Cabrera, A. N. Hiller Blin and M. J. Vicente Vacas, Phys. Rev. C 95, no. 1, 015201 (2017)
[arXiv:1609.03880 [nucl-th]].

[10] J. J. Cobos-Martinez, K. Tsushima, G. Krein and A. W. Thomas, Phys. Lett. B 771, 113 (2017)
[arXiv:1703.05367 [nucl-th]].

[11] P. Gubler and K. Ohtani, Phys. Rev. D 90, no. 9, 094002 (2014) [arXiv:1404.7701 [hep-ph]].

[12] S. s. Kim and S. H. Lee, Nucl. Phys. A 679, 517 (2001) [nucl-th/0002002].

[13] H. Kim, P. Gubler and S. H. Lee, Phys. Lett. B 772, 194 (2017) Erratum: [Phys. Lett. B 779, 498
(2018)] [arXiv:1703.04848 [hep-ph]].

[14] W. Freeman et al. [MILC Collaboration], Phys. Rev. D 88, 054503 (2013) [arXiv:1204.3866
[hep-lat]].

[15] H. Ohki et al. [JLQCD Collaboration], Phys. Rev. D 87, 034509 (2013) [arXiv:1208.4185 [hep-lat]].

[16] S. Durr et al., Phys. Rev. Lett. 116, no. 17, 172001 (2016) [arXiv:1510.08013 [hep-lat]].

[17] N. Yamanaka et al. [JLQCD Collaboration], Phys. Rev. D 98, no. 5, 054516 (2018)
[arXiv:1805.10507 [hep-lat]].

[18] P. Gubler, K. S. Jeong and S. H. Lee, Phys. Rev. D 92, no. 1, 014010 (2015) [arXiv:1503.07996
[hep-ph]].

[19] S. H. Lee, Phys. Rev. C 57, 927 (1998) Erratum: [Phys. Rev. C 58, 3771 (1998)] [nucl-th/9705048].

[20] K. Aoki [J-PARC E16 Collaboration], arXiv:1502.00703 [nucl-ex].

6


