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Figure 1: Hierarchy of masses for different models. In 2-flavour QCD there is a large
gap between the pions and the heavier states, while in certain near-conformal BSM
models, the pions are observed to be almost degenerate with the isosinglet scalar.
Similarly, in the case of 3-flavour QCD, the isosinglet scalar is almost degenerate
with the kaons.

1. Introduction

In recent years there has been a renewed interest in studying the properties and the phe-
nomenology of the isosinglet scalar, both in QCD and in near-conformal BSM models, albeit for
different reasons. In the former case, new advances in lattice field theory have made it possible
to study the isosinglet channel in scattering processes, revealing many interesting and non-trivial
properties [1, 2]. In the latter case, the isosinglet scalar is interesting because of its relation to
conformal symmetry. In particular, if the model of interest is sufficiently close to the conformal
window, but still in the chirally broken phase, the isosinglet scalar can (at least partially) be iden-
tified with the Goldstone boson arising from the spontaneous breaking of scale invariance. In this
case, the scalar is commonly known as a dilaton, and because of its origin as a Goldstone boson, it
might potentially be very light. This has indeed been observed in lattice simulations [3–9], where
in some cases the isosinglet scalar is observed to be lighter than the pions. However, it should be
mentioned that, assuming these BSM models indeed are in the chirally broken phase, sufficiently
close the chiral limit, the pions will always be the lightest states.

At low energy, strongly coupled theories are described by chiral perturbation theory, under the
assumption that there is a gap between the mass of the Goldstone bosons and the heavier states,
such that these heavy states can be integrated out. As shown on Fig. 1, in two-flavour QCD this is
indeed the case, but in the previously mentioned case of near-conformal BSM models, there might
not be any separation between the isosinglet scalar and the pions. Furthermore, when considering
three-flavour QCD, the kaons are almost degenerate with the isosinglet scalar, which again shows
a lack of proper separation.

Due to this lack of separation between the isosinglet scalar and the Goldstone bosons, in some
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cases chiral perturbation theory might not be a reliable description of the low energy physics. For
this reason, there have been several attempts at constructing effective field theories that take both
of these states into account [10–18]. While the different theories incorporate the isosinglet scalar
in different ways, they are all extensions of either chiral perturbation theory or the linear sigma
model. In these proceedings we will discuss an extension of chiral perturbation theory described
in [12].

2. Approach

In this section we introduce a version of chiral perturbation theory augmented with an isos-
inglet scalar field. To keep the discussion short, we will only describe the main points, while the
details can be found in the original paper [12].

Before we can write down the Lagrangian, we have to adopt an appropriate counting scheme
that includes both the pion and the scalar mass. To this end, we choose the simplest possible
extension, where the scalar counts in the same way as the pions

O(m2
π) = O(m2

σ ) = O(p2) . (2.1)

There are two reasons for choosing this particular counting scheme. First of all, when choosing a
counting scheme where the scalar counts differently from the pions, in the perturbative expansion,
a Feynman diagram including both scalars and pions, does no longer contribute to a single order in
the chiral expansion, but in fact to different neighbouring orders. While this is only a mathematical
problem, it does make the calculations more complicated. The second reason is phenomenologi-
cally motivated, because in lattice simulations of near-conformal BSM models, it is observed that
the scalar mass in fact does seem to scale similarly to the pion mass. This is of course only true in
some intermediate range of quark masses, because in the chiral limit the pions are massless, while
the scalar is not, i.e.

m2
π = Amq , m2

σ = m2
0 +Bmq . (2.2)

Here m0 is the scalar mass in the chiral limit and mq is the quark mass. This means that, suffi-
ciently close to the chiral limit, one should indeed integrate out the scalar and use normal chiral
perturbation theory.

Having established the counting scheme, we can write down the Lagrangian for our effective
theory. Let G be the global flavour symmetry and let H denote the stability group after spontaneous
chiral symmetry breaking. The Goldstone boson manifold G/H is then parametrized by

u = exp
(

i√
2 fπ

φ
aXa
)

, (2.3)

where fπ is the tree-level pion decay constant and Xa are the broken generators. From this definition
we can build the two primary invariants (i.e. objects invariant under the stability group) used to
construct the Lagrangian

uµ = i(u†(∂µ − irµ)u−u(∂µ − ilµ)u†) , (2.4)

χ± = u†
χu†±uχ

†u . (2.5)
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The first invariant uµ is used to construct the kinetic term, with lµ and rµ being the external currents.
The second invariant χ± is used to construct the mass term, with χ the diagonal mass matrix. In
fact, at leading order the chiral Lagrangian is simply given by

L2 =
f 2
π

4
〈uµuµ + χ̃+〉 , (2.6)

where χ̃+ = χ+− (χ + χ†) is the mass term without the constant piece (this subtraction is needed
later on) and 〈·〉 denotes the trace in flavour space. At higher order, the chiral Lagrangian contains
many more terms, each associated with an unknown low-energy constant (LEC). For example, at
next-to-leading order (NLO) we have terms like

L4 = L0〈uµuνuµuν〉+L1〈uµuµ〉〈uνuν〉+L2〈uµuν〉〈uµuν〉+ · · · . (2.7)

The exact expression for the Lagrangian is not important for the current discussion and we refer
to [12, 19] for details. While the chiral Lagrangian only depends on the global flavour symmetry,
the LECs encode information about the underlying strong dynamics. For this reason, they can be
divided into contributions from various sources, such as heavier resonances

Li = L̂i +∑
R

LR
i . (2.8)

Here LR
i is the contribution from a resonance R and L̂i is a remainder not directly related to any

resonance. For example, under the assumption of vector meson dominance, the contributions LR
i

can be written in terms of the decay constants and masses of these heavy vector resonances [20,21].
In the same way, the isosinglet scalar might contribute to the LECs, but when the scalar is light, the
contribution is dynamical and not just a constant.

With the previous discussion in mind, we will now introduce the isosinglet scalar σ in the
chiral Lagrangian as a non-trivial background field [10, 22]. In practice this is done by expanding
each coefficient in the Lagrangian in powers of σ/ fπ . Because we are interested in calculating
the radiative corrections to the two-point functions at next-to-leading order, the expansion is only
needed for the leading-order Lagrangian and we can stop the series expansion at second order.

L2 =
f 2
π

4

[
1+S1

(
σ

fπ

)
+S2

(
σ

fπ

)2

+ · · ·

]
〈uµuµ〉

+
f 2
π

4

[
1+S3

(
σ

fπ

)
+S4

(
σ

fπ

)2

+ · · ·

]
〈χ̃+〉

(2.9)

It is now evident that the subtraction in the mass term is needed to avoid terms that only include
the scalar field. The associated Lagrangian for the scalar field can be written as

Lσ =
1
2

∂µσ∂
µ

σ − 1
2

m2
σ σ

2

[
1+S5

(
σ

fπ

)
+S6

(
σ

fπ

)2
]
. (2.10)

In principle we should also perform a series expansion in front of the kinetic term, but since we
will only consider on-shell quantities, these terms are related to the potential via the equations

3
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of motion. Because the scalar field parametrise the fluctuations around the vacuum, it must have
vanishing expectation value, and this leads to certain constraints on the two parameters S5 and S6

controlling the potential
S5 ≥−2

√
S6 , S6 ≥ 0 . (2.11)

On top of these definitions, we also need a set of counterterms to renormalize the Lagrangian. These
can be found in the original paper [12] together with a detailed description of the renormalization
procedure.

Before continuing, we want to mention that our approach is completely generic, within the
limits of the chosen counting scheme. We make no assumption about the nature of the scalar, but
one can show that different physical origins correspond to imposing constraints on the couplings Si

between the scalar and the pions, as shown later on. Moreover, when performing the calculations
at NLO, the results are largely independent of the pattern of chiral symmetry breaking, and for this
reason, the results can easily be applied to any model of interest.

3. Results

Having defined the Lagrangian, we are now able to calculate the two-point functions needed
to define the renormalized pion mass, pion decay constant, and scalar mass, at next-to-leading
order. For both the pion mass and the pion decay constant there are four diagrams in total; two
diagrams with scalars in the loop, one contact term and one diagram only with pions. We define
the renormalized pion mass as the pole mass in the propagator, and the result reads

m̂2
π = m2

π +
m4

π

f 2
π

(a1 +a2Lπ +a3Jπσπ)+
m4

σ

f 2
π

(a4Lσ +a5Jπσπ)

+
m2

πm2
σ

f 2
π

(a6 +a7Lπ +a8Lσ +a9Jπσπ) ,

(3.1)

while the result for the pion decay constant reads

f̂π = fπ +
m2

π

fπ

(b1 +b2Lπ +b3Jπσπ)+
m2

σ

fπ

(b4 +b5Lσ +b6Jπσπ)

+
Hπσπ

fπ

(b7m4
π +b8m4

σ +b9m2
πm2

σ ) .

(3.2)

Here ai and bi are specific combinations of the various low-energy constants. In the case of normal
chiral perturbation theory, the only non-zero constants are a1,2 and b1,2 which means that including
the scalar vastly increases the complexity of the results. In the equations we use the following
auxiliary functions as shorthand notation for the chiral logs and the unitarity corrections. We refer
to the appendix of [12] for the definition of the barred functions.

Lx =
1

16π2 log
(

m2
x

µ2

)
Jxyz =

1
16π2

[
J(m2

x ,m
2
y ,m

2
z )+1

]

Hxyz =
1

16π2

[
H(m2

x ,m
2
y ,m

2
z )

] (3.3)
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Figure 2: Behaviour of Jππσ as a function of the ratio mσ/mπ . A branch cut is devel-
oped when mσ = 2mπ after which the imaginary part describe the decay width of the
isosinglet scalar in the σ → ππ channel.

We also calculated the renormalized scalar mass, which reads

m̂2
σ = m2

σ +
m4

σ

f 2
π

(c1Lσ + c2Jππσ + c3Jσσσ )+
m4

π

f 2
π

(c4Lπ + c5Jππσ )

+
m2

πm2
σ

f 2
π

(c6Lπ + c7Jππσ ) .

(3.4)

The calculation of the scalar self-energy includes a diagram with an intermediate pion loop. Be-
cause of this diagram, when the scalar is sufficiently heavy, the pions are able to go on-shell,
corresponding to the σ → ππ decay channel being kinematically allowed. In the analytical expres-
sion for the renormalized scalar mass, this results in a branch cut in the function Jππσ as shown in
Fig. 2. The branch cut starts at mσ = 2mπ and above this threshold the decay width of the scalar
can be extracted from the imaginary part

Γ =
nπ

16πmσ f 2
π

(
S1

(
m2

σ

2
−m2

π

)
+S3m2

π

)2
√

1− 4m2
π

m2
σ

. (3.5)

Here nπ is the number of pions for the given pattern of chiral symmetry breaking and S1 and S3 are
the two low-energy constants parametrizing the decay width. Because S3 parametrize the interac-
tion between the scalar and the pion mass term, in the chiral limit, this coefficient is irrelevant, and
the decay width only depends on S1.

3.1 Consistency checks

We performed several consistency checks of the previous results to ensure their validity. For
the pion we checked that the renormalized mass m̂2

π vanishes in the limit chiral limit where m2
π→ 0.

5
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This is a non-trivial check, because the m4
σ term only vanishes due to an exact cancellation in the

chiral limit.
For the pion decay constant we checked that we obtain a finite and non-zero value in the chiral

limit, which indeed is the case

f̂π = fπ +
m2

σ

fπ

(
b4 +(b5 +b6)Lσ −

b8

32π2

)
. (3.6)

Because of the scalar corrections, we observe that f̂π and fπ no longer coincide in the chiral limit.
In fact, the entire right-hand side corresponds to what is denoted fπ in normal chiral perturbation
theory.

Finally we checked that all the results are independent of the renormalization scale. This
means that changing the renormalization scale corresponds to a shift in all the LECs. Again, this is
a non-trivial property, because it depends on the specific combinations of the functions defined in
Eq. (3.3).

4. Origins of the scalar

As already mentioned, our approach for including the scalar is completely generic. However,
if we assume a specific physical origin for the scalar, we can make predictions for the couplings Si

between the scalar and the pions. As an example, here we will consider the case where the scalar
emerges as a pseudo-dilaton [23, 24]. In this scenario, the scalar is introduced as the conformal
compensator, and the Lagrangian reads

L2 =
f 2
π

4

[
〈uµuµ〉exp

(
2σ

fπ

)
+ 〈χ+〉exp

(
yσ

fπ

)]
. (4.1)

Although we use fπ as the compensating scale for the pseudo-dilaton in the exponential, de facto,
depending on the microscopic realization it can differ, but our results still apply. Expanding the
exponential to second order we find that our couplings are given by

S1 = S2 = 2 , S3 = y , S4 =
y2

2
. (4.2)

Here y = 3− γ∗ with γ∗ being the anomalous dimension of the fermion mass in the underlying
gauge theory. It is now evident that γ∗ is the only new parameter in the expression for the pion
mass and the pion decay constant, when the scalar field is a pseudo-dilaton.

With this example it is evident that the value of the couplings Si can be used to make predic-
tions about the origin of the scalar field. The original paper [12] contains a few more examples of
different physical origins.

5. Fitting lattice data

As an example, we will now use the results from section 3 to fit a set of lattice data from
the LatKMI collaboration. The simulated model is an SU(3) gauge theory with N f = 8 dynamical
flavours [4]. This model is an example of a near-conformal BSM model, and (although not entirely

6
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mq L3×T m̂σ Table L3×T m̂π f̂π Table

0.012 423×56 0.151(27) XVII 423×56 0.16362(43) 0.04542(27) XXI
0.015 363×48 0.162(59) XVII 423×56 0.18614(44) 0.05054(15) XXI
0.020 363×48 0.190(36) XVII 363×48 0.22052(33) 0.05848(15) XXII
0.030 303×40 0.282(39) XVII 363×48 0.28084(39) 0.07137(20) XXII
0.040 303×40 0.365(51) XVII 303×40 0.33501(21) 0.08264(10) XXIII
0.060 243×32 0.46(13) XVII 303×40 0.43035(44) 0.10118(28) XXIII

Table 1: Numerical data used for the fitting procedure. The table column refer to the
table in [4] from where the data was taken. For simplicity we averaged the upper and
lower errors for the scalar mass.

conclusive) it is believed to be in the chirally broken phase. Furthermore, for this model the pion
and the scalar mass are almost degenerate over the explored range of quark masses, which was the
assumption used for choosing our counting scheme.

The numerical data used for the fit is shown in Table 1, together with references to where the
data was found in [4]. Because our extension allows us to simultaneously fit the pion mass, the pion
decay constant, and the scalar mass, ideally all of these quantities should have similar uncertainties
to properly constrain the fit. However, due to the difficulty in measuring the scalar state in lattice
simulations, this quantity will always have a significantly larger uncertainty.

The list in Eq. (5.1) contains the 13 free parameters used for the fit. In the continuum the
two coefficients aM and aF are known numbers, but at non-zero lattice spacing these will receive
unknown corrections. For this reason, it is usually very difficult to fit lattice data when using the
continuum values, and this is still true even with the additional parameters introduced by the scalar
extension. This is why we also include these as free parameters.

{B0 , fπ , aM , bM , aF , bF , mσ , S1 , S2 , S3 , S4 , S5 , S6} (5.1)

The result of the fit is shown in Fig. 3. During the fitting procedure we found two different minima
with the same value of χ2/dof = 1.39. For both of these minima, the visual result is the same for
the pion mass and the pion decay constant, while the visual result for the scalar is slightly different.
This is easily understood, because the uncertainty on the scalar mass is significantly larger, such
that the value of χ2 is completely determined by the pion quantities. Close to the chiral limit, the fit
for the scalar mass is very different for the two minima, however, this is not important because the
scalar is unstable in this region. As a consequence, the fit cannot be used to extrapolate the scalar
mass, and we are satisfied that the fit for the scalar mass is consistent in the region of quark masses
where we have data.

For one of the minima, we see the branch cut in the scalar mass close to the chiral limit, while
in the other case, the coefficients in front of the Jππσ function are so small that we do not see
the branch cut. The fact that the coefficients are quite different for the two minima proves that
the uncertainty on the scalar mass is too large to properly constrain the Si parameters. This is an
important observation because, as previously discussed, the values of the fitted parameters can be

7
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Figure 3: Fit to the numerical data in Table 1. Two different minima were found with
the same value of χ2. For the two minima there is no visual difference for the pion
quantities, but there is a small difference for the scalar mass, because this quantity has
significantly larger errorbars.

used to distinguish between different physical origins of the scalar, but unfortunately this is not
possible with the currently available data.

We finally remark that, for both minima, the constraint on the scalar potential in Eq. (2.11)
is satisfied because both coefficients are positive. Furthermore, in the chiral limit the difference
between the renormalized and the bare pion decay constant is relatively small, namely:

f̂π − fπ

f̂π

∼ 5% (5.2)

This is expected when the scalar only acts as a small perturbation of chiral perturbation theory.

6. Conclusion

We presented a simple extension of chiral perturbation theory that accounts for the dynamical
effects of a light isosinglet scalar state. After discussing the chosen counting scheme, we introduce
the Lagrangian and calculate the radiative one-loop corrections to the pion mass, the pion decay
constant, and the scalar mass. Our approach is very generic, it makes no assumptions about the
physical origin of the scalar and the results are valid for different patterns of chiral symmetry
breaking. For this reason, the framework can be used for a large class of interesting models. After
presenting the results, we argue that different physical origins of the scalar correspond to imposing
constraints on some of the low-energy constants, and as such, in principle one can make predictions
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about the nature of the scalar by fitting these constants to data. For this reason, we use the results to
fit numerical data from a lattice simulation, and while this is possible, the uncertainty on the scalar
mass is too large to properly constrain the interesting coefficients.
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