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1. Introduction

The long distance behaviour of a strongly interacting SU(Nc) gauge theory has a strong depen-
dence on the number of fermion flavours N f and on the representation under which the fermions
transform. When the number of fermions is reasonably small, these theories break the chiral sym-
metry similarly to QCD and are confining. However, if the number of flavours is increased while
the number of colours is kept the same, the theory will develop a non-trivial infrared fixed point
(IRFP) and the long distance behaviour of the theory becomes conformal. Increasing the number of
flavours even further will cause the asymptotic freedom to be lost. This upper limit in the number
of flavours before losing the asymptotic freedom is perturbatively known to be NAF

f = 11Nc/2 and
is called the upper edge of the conformal window. The exact number of fermions at which the
conformality onsets is called the lower edge of the conformal window and is unknown. Different
perturbative estimates have been given for the location of the lower edge, but since the conformality
generally onsets at large coupling, a non-perturbative analysis is required.

In this paper we focus on the Nc = 2 gauge theory with 2–8 fundamental representation Dirac
fermions in the limit of vanishing quark mass and try to paint a complete picture of the conformal
window in SU(2) theories. These SU(2) symmetric models offer a simple framework for testing
different long distance dynamics [1]. The current status of lattice simulation [2 – 11] indicate that
the N f = 2,4 are confining and N f = 6− 10 are inside the conformal window. Above N f = 11
the asymptotic freedom is lost. Here we review our results, published in [8 – 11], that clarified the
existence of an IRFP in N f = 6 and N f = 8 models.

We have performed running of the coupling analyses on N f = 6 and N f = 8 models and con-
firmed that they feature an IRFP. From the same configurations we also measure anomalous di-
mensions characterizing the behaviour near the IRFP. Alongside, we have run a systematic study
on the spectrum in SU(2) gauge theory with N f = 2,4,6. From the scaling of hadron masses with
respect to quark masses we observe chiral symmetry breaking for two and four fermion models and
a strong indication of conformality for the N f = 6 model. In the N f = 6 model we can also extract
the mass anomalous dimension which confirms the results obtained from the measurement of the
running coupling.

2. Lattice formulation

The study of SU(2) gauge theory with N f massless Dirac fermions in the fundamental repre-
sentation is carried out using a combination of HEX smeared [12] SG(V ) and unsmeared SG(U)

Wilson gauge actions. These gauge actions are combined with a factor cg = 0.5. For the Fermion
action we employ clover improved Wilson fermion action SF(V ), with tree-level Sheikholeslami-
Wohlert coefficient csw = 1. We use the smeared gauge links in the fermion action. Combining
these actions we get a total lattice action: SG = (1− cg)SG(U)+ cgSG(V )+SF(V )+ cswδSSW(V ).

For the running of the coupling study, we set the boundaries following the Schrödinger func-
tional method [13] by imposing Dirichlet boundary conditions on temporal directions, with the
gauge link matrices set to unity and fermion fields set to zero. For the spatial directions the bound-
aries are taken periodic. This gives us an additional method to measure the mass anomalous dimen-
sion. Also the PCAC relation with Schrödinger functional method [14] allows easier tuning of the
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mass to zero than the PCAC relation for periodic boundaries, which is in turn used with spectrum
study where we have periodic boundaries to all directions.

In general, the simulations are run with multiple different lattice sizes and bare couplings. For
exact numbers of these quantities and comprehensive algorithmic details we refer the reader to the
original papers [8 – 11].

3. Running of the coupling

We measure the running of the coupling using the Yang-Mills gradient flow [15, 16]. With the
gradient flow method we continuously smear the gauge field towards the minima of the Yang-Mills
action removing the UV divergences. The gradient flow is defined as a differential equation with
respect to fictitious time t: ∂tBµ = DνGνµ with initial condition Bµ(x; t = 0) = Aµ(x). Here the
Dµ = ∂µ +[Bµ , · ] is the covariant derivative and Gµν(x; t) is the field strength tensor. On the lattice
one has to choose the discretization for the Gµν(x; t). We evolve the gradient flow with both with
Lüscher-Weisz action (LW) and with Wilson action (W) in order to investigate the discretization
effects.

The coupling can be measured from the evolved fields at a scale µ−1 =
√

8t: as g2
GF(µ) =

N −1t2〈E(t + τ0)〉|x0=L/2 , t−1=8µ2 . Here E(t) is the energy density and the normalization factor N

is defined for the Schrödinger functional boundary conditions in [17]. Because of the boundary
conditions break the time translation invariance, we only measure the coupling along the central
time slice x0 = L/2. τ0 defines an empirical O(a2) improvement for the gradient flow coupling [18].
We choose τ0 = 0.025log(1+2g2

GF) for N f = 6 [9] and τ0 = 0.06log(1+g2
GF) for N f = 8 [8]. In [10]

we employ alternative O(a2) improvement by combining clover and plaquette measurements of
E(t) with empirical coefficient X [19]. Furthermore, the fictitious time t at which the coupling
is measured, is determined by relating the lattice and renormalization scales with a dimensionless
parameter ct =

√
8t/L. The choice of ct defines the renormalization scheme.

We measure the gradient flow coupling at multiple bare couplings g2
0 = 4/β . The bare cou-

plings are varied from 0.5 to 8 for N f = 8 and to 10 for N f = 6. We then interpolate these couplings
with either polynomial or rational ansatz. For N f = 6 model we perform the interpolation with 9th
degree polynomial for lattices larger than L = 16 and 10th degree polynomial for smaller lattices.
In N f = 8 model we use a rational ansatz with 7th degree polynomial in the numerator and 1st
degree polynomial in the denominator. With the interpolated couplings we can define a continuous
the step scaling function and extrapolate continuum with:

Σ(u,L/a,s) = g2
GF(g

2
0,sL/a)|g2

GF(g
2
0,L/a)=u , Σ(u,L/a) = σ(u)+ c(u)

(a
L

)2
, (3.1)

where we have assumed discretization effects to be of order O(a2). The step scaling function
allows us to evaluate the running of the coupling and the IRFP will be identified by a condition
σ(g2

GF)/g2
GF = 1.

In Fig 1 we present the continuum extrapolated step scaling function (3.1) for both the N f = 6
and N f = 8 fermion models. In the N f = 6 model we use a step size of s = 3/2 and set the scheme
with ct = 0.3, while in the N f = 8 model we use a step size of s = 2 and set the scheme with
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Figure 1: Continuum extrapolated step scaling function (3.1) with different discretizations for: Left: N f = 6
theory with ct = 0.3, s = 1.5 and Right: N f = 8 theory with ct = 0.4, s = 2.
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Figure 2: The anomalous dimension of the coupling γ∗g can be measured in two different ways: as a slope
of the β -function (left) or with finite-size scaling method (right). Both figures are for N f = 6 model. On the
right hand figure, the red lines indicate the measurement from the slope, and the difference between solid
and dashed curves indicate the uncertainty in g2

∗.

ct = 0.4. In order to ensure correct continuum limit we perform the analysis using several different
discretizations of flow and energy density, of which we show two examples with different colours
in Fig 1. We observe that our measurement follows the universal 2-loop MS curve up to some
intermediate coupling before diverting towards an IRFP. The higher order perturbative curves are
scheme dependent and only shown for a comparison. We do not plot the recent 5-loop result [20]
as not only does it not have an IRFP with these numbers of fermions, it also develops two separate
conformal windows in SU(2) models clearly indicating a breaking of perturbation theory at high
couplings [9]. As can be seen from Fig 1, the N f = 6 theory has an IRFP at g2

∗ = 14.5(4)+0.4
−1.2 [9]

and the N f = 8 theory has an IRFP at g2
∗ = 8.24(59)+0.97

−1.64 [8]. Here the first set of errors is the
statistical error for the chosen set of discretizations and the second set gives the variation between
different discretization choices.

4. Anomalous dimension of the coupling

While the location of an IRFP is a scheme dependent quantity, the first irrelevant dimension
of the gauge coupling γg(g) = β ′(g)−β (g)/g [21] is invariant at the IRFP g = g∗. At the IRFP
γg(g∗) = γ∗g reduces to a slope of the β -function, which we can measure directly from the step
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Figure 3: Singlet meson behaviour (upper row) and pseudoscalar decay constants (lower row) for N f = 2
(left), N f = 4 (middle), and N f = 6 (right).

scaling function (3.1). Alternatively, a finite-size scaling method of measuring γg was proposed
in [22 – 25]. In a functional form these two approaches can be written as:

γ
∗
g =

d
dg

g
2ln(s)

(
1− σ(g2,s)

g2

)∣∣∣∣
g=g∗

, g2
GF(β ,L)−g2

∗ =
[
g2

GF(β ,Lref)−g2
∗
](Lref

L

)γ∗g
. (4.1)

Both of these methods can be used with the same interpolated data used in section 3, but, because
our interest now only lies at the IRFP, we can get statistically more significant result by doing lower
order fit in the vicinity of the IRFP [10]. This procedure is demonstrated in the left side of Fig 2
for the N f = 6 theory.

By measuring the slope of the β -function with multiple different fit ansatz we extract γ∗g =

0.66(4)+0.25
−0.13 for the N f = 6 model and γ∗g = 0.19(8)+0.21

−0.09 for the N f = 8 model [10], where the
two sets of errors are again the statistical and systematical errors, respectively. These results are in
agreement with the scheme independent perturbative estimates [26]: γ∗g = 0.6515 for N f = 6 and
γ∗g = 0.25 for N f = 8.

On the other hand the finite-size scaling method offers a consistency check for the result ob-
tained above. Because of the finite size effects and poor signal at the IRFP caused by g2

GF−g2
∗ ∼ 0,

exact numbers cannot be extracted using this method. On the right side of Fig 2 we present this
method for the N f = 6 model and we can see that the finite-size scaling method develops a maxi-
mum that agrees with the measurement obtained from the slope of the β -function [9, 10].

5. Mass spectrum

We have determined the masses of pseudoscalar π and vector ρ mesons by fitting time sliced
average correlation functions with Coulomb gauge fixed wall sources. The spectrum of these par-

4



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
2
2
5

Infrared Behaviour of SU(2) Gauge Theory Viljami Leino

ticles are shown in the upper row of Fig 3 for the N f = 2,4,6 models. For the N f = 4,6 models
we only show the π meson, and for the ρ results we refer the reader to the original paper [11]. As
shown in the Fig 3, the N f = 2 model shows clear QCD-like chiral symmetry breaking behaviour
with the pseudoscalar scaling like Mπ ∼√mq and the vector meson mass having a finite intercept
in the mq→ 0 limit. The ratio mρ/mπ diverges in this limit.

The N f = 4 model is closer to conformal window and therefore the signal is expected to be
harder to measure. In Fig 3 we observe the fit quality decreasing as the β parameter is increased,
probably due to finite size effects. However, as long as the β is reasonably small, we get a good
square root fit for the N f = 4 model singlet meson behaviour which is observed to be similar to the
N f = 2 case and consistent with a chiral symmetry breaking. This confirms the previous running
coupling result [4].

In the final N f = 6 case, we observe heavy volume dependence manifested by a plateau in
meson measurements at small quark masses shown in Fig 3. As the difference between filled
and hollow points show, the onset of the plateau moves to smaller quark masses as the volume is
increased confirming this to be volume effect. Regardless of these volume effects, it is still possible
to do a scaling fit and extrapolate to zero mass. We observe that the pseudoscalar scales towards
zero and indicates a conformal dynamics, which confirms the result obtained from the running of
the coupling [9].

On the lower row of Fig 3 we show the scaling behaviour of the pseudoscalar decay constant
Fπ for all the models N f = 2,4,6. For the chirally broken cases N f = 2 and N f = 4 we observe
finite intercept of Fπ at zero quark mass limit while in the conformal N f = 6 model the Fπ scales
to zero. For the numerical values of the interception points we again refer the reader to the original
paper [11]. The pseudoscalar decay constant also offers a criteria to assess the finite volume effects.
For the N f = 2 we have FπL > 1 indicating the finite volume effects to be under control in the chiral
limit. For the N f = 4 model we satisfy this condition only for the β = 0.6 and for the larger β this
onset of finite volume effects explains the decrease in fit quality in the upper row in Fig 3. For the
N f = 6 model Fπ scales towards zero indicating an IRFP.

6. Mass anomalous dimension

As a gauge theory approaches an IRFP the coupling becomes and irrelevant direction and
only relevant operator is the quark mass. At the IRFP, where g2 = g2

∗, all composite-state masses
run to zero together with the quark mass with an universal exponent: m1/(1+γ∗m(g∗))

q . We can fit
this behaviour to both pseudoscalar masses in Fig 3 and vector masses [11] to measure the mass
anomalous dimension γm. This measurement is shown as coloured points on the left side of Fig 4.

Alternatively, we can measure the mass anomalous dimension from the configurations used
in the running of the coupling study [8, 9]. We extract the γm using two different methods:
the step scaling method [27, 28] and the spectral density method [29, 30]. In the step scaling
method we measure the running of the pseudoscalar density renormalization constant ZP and de-
fine γm(u)log(s) = − lima→0 log[Zp(β ,sL/a)/Zp(β ,L/a)]|g2

GF(β ,L/a)=u, where the continuum limit
is taken assuming O(a2) scaling. Interpolating Zp with 8th degree polynomial we get the contin-
uum limit shown in Fig 4 for the N f = 6 theory. This method becomes rather unstable at higher
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Figure 4: The mass anomalous dimension γm with step scaling method (left, shaded curve), scaling of meson
masses (left, points), and spectral density method (right). On the left we only have N f = 6 and on the right
we have both N f = 6 in yellow-black and N f = 8 in pink-blue.

g2
GF γ∗g γ∗m γR&S

g γR&S
m

N f = 6 14.5(4)+0.4
−1.2 0.66(4)+0.25

−0.13 0.283(2)+0.01
−0.01 0.6515 0.6

N f = 8 8.24(59)+0.97
−1.64 0.19(8)+0.21

−0.09 0.15(2)+0.01
−0.01 0.25 0.3

Table 1: Location of IRFP and its anomalous dimensions compared to scheme invariant perturbative esti-
mates [26].

couplings which is perceived as increased errors. Again the higher order perturbative curves are
shown as a reference and are not directly comparable. For N f = 8 theory the step scaling method is
unstable and is not presented here; our take on the continuum limit in N f = 8 model can be found
in [9].

The last method of measuring γm is the spectral method. In the spectral method we stochasti-
cally extract the mode number of Dirac operator [31, 29]. The mode number is known to a scaling
Λ4/(1+γ∗m) in the vicinity of an IRFP. With this method we can extract γm for both N f = 6 and N f = 8
as shown on the right side of Fig 4. We also observe that the results agree with those attained with
other two methods. The only caveat of this method is that we only get a good signal at large lattices,
and hence we have not enough points for proper continuum limit and the curves shown in Fig 4 are
only for the single largest lattice sizes. We measure the values γ∗m = 0.283(2)+0.01

−0.01 for N f = 6 and
γ∗m = 0.15(2) for N f = 8.

7. Conclusions

We have studied the running coupling and mass scaling in the SU(2) lattice gauge theory with
2–8 massless Dirac fermions. From the results it is clear that the N f = 2 and N f = 4 models are
chirally broken and have QCD-like behaviour. Meanwhile, we have presented strong evidence on
the existence of an IRFP in N f = 6 and N f = 8 models. For these conformal models we have
completed table 1 with all the properties we have measured at the IRFP. We have also included
comparison to the scheme independent perturbative estimation [26]. We have checked the scheme

6
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independence of these results by varying the gradient flow parameter ct , these numbers and many
more details are available in the original publications [8 – 11].
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